Aguiar WMD, Gaglianone MC. Euglossine bee communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil (Hymenoptera, Apidae). Rev Bras Entomol. 2012;56(2):210–9.
Google Scholar
Aguiar WMD, Sofia SH, Melo GA, Gaglianone MC. Changes in orchid bee communities across forest-agroecosystem boundaries in Brazilian Atlantic Forest landscapes. Environ Entomol. 2015;44(6):1465–71.
PubMed
Google Scholar
Aizen MA, Feinsinger P. Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology. 1994;75(2):330–51.
Google Scholar
Aizen MA, Feinsinger P. Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine ‘Chaco Serrano.’ Ecol Appl. 1994;4(2):378–92.
Google Scholar
Andrade-Silva ACR, Nemésio A, de Oliveira FF, Nascimento FS. Spatial–temporal variation in orchid bee communities (Hymenoptera: Apidae) in remnants of arboreal Caatinga in the Chapada Diamantina region, State of Bahia, Brazil. Neotrop Entomol. 2012;41(4):296–305.
CAS
PubMed
Google Scholar
Assembly G. Resolution adopted by the General Assembly on 19 September 2016, A/RES/71/1, 3 October 2016 (The New York Declaration). 2015.
Bartholomée O, Aullo A, Becquet J, Vannier C, Lavorel S. Pollinator presence in orchards depends on landscape-scale habitats more than in-field flower resources. Agric Ecosyst Environ. 2020;293:106806.
Google Scholar
Bennett AB, Lovell S. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PloS ONE. 2019;14(2):e0212034.
CAS
PubMed
PubMed Central
Google Scholar
Bentrup G, Hopwood J, Adamson NL, Vaughan M. Temperate agroforestry systems and insect pollinators: a review. Forests. 2019;10(11):981.
Google Scholar
Berecha G, Aerts R, Muys B, Honnay O. Fragmentation and management of Ethiopian moist evergreen forest drive compositional shifts of insect communities visiting wild Arabica coffee flowers. Environ Manag. 2015;55(2):373–82.
Google Scholar
Blitzer EJ, Dormann CF, Holzschuh A, Klein A-M, Rand TA, Tscharntke T. Spillover of functionally important organisms between managed and natural habitats. Agric Ecosyst Environ. 2012;146(1):34–43.
Google Scholar
Boreux V, Krishnan S, Cheppudira KG, Ghazoul J. Impact of forest fragments on bee visits and fruit set in rain-fed and irrigated coffee agro-forests. Agric Ecosyst Environ. 2013;172:42–8.
Google Scholar
Botsch JC, Walter ST, Karubian J, González N, Dobbs EK, Brosi BJ. Impacts of forest fragmentation on orchid bee (Hymenoptera: Apidae: Euglossini) communities in the Chocó biodiversity hotspot of northwest Ecuador. J Insect Conserv. 2017;21(4):633–43.
Google Scholar
Bravo-Monroy L, Tzanopoulos J, Potts SG. Ecological and social drivers of coffee pollination in Santander, Colombia. Agric Ecosyst Environ. 2015;211:145–54.
Google Scholar
Breitbach N, Tillmann S, Schleuning M, Grünewald C, Laube I, Steffan-Dewenter I, Böhning-Gaese K. Influence of habitat complexity and landscape configuration on pollination and seed-dispersal interactions of wild cherry trees. Oecologia. 2012;168(2):425–37.
PubMed
Google Scholar
Briggs H, Perfecto I, Brosi B. The role of the agricultural matrix: coffee management and euglossine bee (Hymenoptera: Apidae: Euglossini) communities in southern Mexico. Environ Entomol. 2013;42(6):1210–7.
CAS
PubMed
Google Scholar
Brosi BJ. The complex responses of social stingless bees (Apidae: Meliponini) to tropical deforestation. For Ecol Manag. 2009;258(9):1830–7.
Google Scholar
Brosi BJ. The effects of forest fragmentation on euglossine bee communities (Hymenoptera: Apidae: Euglossini). Biol Cons. 2009;142(2):414–23.
Google Scholar
Brosi BJ, Daily GC, Ehrlich PR. Bee community shifts with landscape context in a tropical countryside. Ecol Appl. 2007;17(2):418–30.
PubMed
Google Scholar
Brosi BJ, Daily GC, Shih TM, Oviedo F, Durán G. The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol. 2008;45(3):773–83.
Google Scholar
Bruinsma J. The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050. In: Expert meeting on how to feed the world in. Rome: FAO; 2009. p. 24–6.
Google Scholar
Buchori D, Rizali A, Larasati A, Hidayat P, Ngo H, Gemmil-Herren B. Natural habitat fragments obscured the distance effect on maintaining the diversity of insect pollinators and crop productivity in tropical agricultural landscapes. Heliyon. 2019;5(3):e01425.
PubMed
PubMed Central
Google Scholar
Calvillo LM, Ramírez VM, Parra-Tabla V, Navarro J. Bee diversity in a fragmented landscape of the Mexican neotropic. J Insect Conserv. 2010;14(4):323–34.
Google Scholar
Campbell AJ, Carvalheiro LG, Maués MM, Jaffé R, Giannini TC, Freitas MAB, Coelho BWT, Menezes C. Anthropogenic disturbance of tropical forests threatens pollination services to açaí palm in the Amazon river delta. J Appl Ecol. 2018;55(4):1725–36.
Google Scholar
Chacoff NP, Aizen MA. Edge effects on flower-visiting insects in grapefruit plantations bordering premontane subtropical forest. J Appl Ecol. 2006;43(1):18–27.
Google Scholar
Coudrain V, Rittiner S, Herzog F, Tinner W, Entling MH. Landscape distribution of food and nesting sites affect larval diet and nest size, but not abundance of Osmia bicornis. Insect Sci. 2016;23(5):746–53.
PubMed
Google Scholar
Crall JD, Brokaw J, Gagliardi SF, Mendenhall CD, Pierce NE, Combes SA. Wind drives temporal variation in pollinator visitation in a fragmented tropical forest. Biol Lett. 2020;16(4):20200103.
PubMed
PubMed Central
Google Scholar
Craven D, Filotas E, Angers V, Messier C. Evaluating resilience of tree communities in fragmented landscapes: linking functional response diversity with landscape connectivity. Divers Distrib. 2016;22(5):505–18.
Google Scholar
Crossman N, Bernard F, Egoh B, Kalaba F, Lee N, Moolenaar S. The role of ecological restoration and rehabilitation in production landscapes: an enhanced approach to sustainable development, working paper for the UNCCD Global Land Outlook. Paris: UNCCD; 2016.
Google Scholar
da Rocha-Filho LC, Rabelo LS, Augusto SC, Garófalo CA. Cavity-nesting bees and wasps (Hymenoptera: Aculeata) in a semi-deciduous Atlantic forest fragment immersed in a matrix of agricultural land. J Insect Conserv. 2017;21(4):727–36.
Google Scholar
De Marco P, Coelho FM. Services performed by the ecosystem: forest remnants influence agricultural cultures’ pollination and production. Biodivers Conserv. 2004;13(7):1245–55.
Google Scholar
Devkota K, dos Santos CF, Blochtein B. Mustard plants distant from forest fragments receive a lower diversity of flower-visiting insects. Basic Appl Ecol. 2020;47:35–43.
Google Scholar
Du Clos B, Drummond FA, Loftin CS. Noncrop habitat use by wild bees (Hymenoptera: Apoidea) in a mixed-use agricultural landscape. Environ Entomol. 2020;49(2):502–15.
PubMed
Google Scholar
Ekroos J, Rundlöf M, Smith HG. Trait-dependent responses of flower-visiting insects to distance to semi-natural grasslands and landscape heterogeneity. Landsc Ecol. 2013;28(7):1283–92.
Google Scholar
Escobedo-Kenefic N, Landaverde-González P, Theodorou P, Cardona E, Dardón MJ, Martínez O, Domínguez CA. Disentangling the effects of local resources, landscape heterogeneity and climatic seasonality on bee diversity and plant-pollinator networks in tropical highlands. Oecologia. 2020;194(3):333–44.
PubMed
Google Scholar
Ewers RM, Bartlam S, Didham RK. Altered species interactions at forest edges: contrasting edge effects on bumble bees and their phoretic mite loads in temperate forest remnants. Insect Conserv Divers. 2013;6(5):598–606.
Google Scholar
Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett. 2011;14(2):101–12.
PubMed
Google Scholar
Ferreira PA, Boscolo D, Lopes LE, Carvalheiro LG, Biesmeijer JC, da Rocha PLB, Viana BF. Forest and connectivity loss simplify tropical pollination networks. Oecologia. 2020;192(2):577–90.
PubMed
Google Scholar
Franceschinelli EV, Elias MA, Bergamini LL, Silva-Neto CM, Sujii ER. Influence of landscape context on the abundance of native bee pollinators in tomato crops in Central Brazil. J Insect Conserv. 2017;21(4):715–26.
Google Scholar
Frankie G, Thorp R, Hernandez J, Rizzardi M, Ertter B, Pawelek J, Witt S, Schindler M, Coville R, Wojcik V. Native bees are a rich natural resource in urban California gardens. Calif Agric. 2009;63(3):113–20.
Google Scholar
Gallai N, Salles J-M, Settele J, Vaissière BE. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ. 2009;68(3):810–21.
Google Scholar
García D, Chacoff NP. Scale-dependent effects of habitat fragmentation on hawthorn pollination, frugivory, and seed predation. Conserv Biol. 2007;21(2):400–11.
PubMed
Google Scholar
Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science. 2013;339(6127):1608–11.
CAS
PubMed
Google Scholar
Gómez-Martínez C, Aase ALT, Totland Ø, Rodríguez-Pérez J, Birkemoe T, Sverdrup-Thygeson A, Lázaro A. Forest fragmentation modifies the composition of bumblebee communities and modulates their trophic and competitive interactions for pollination. Sci Rep. 2020;10(1):1–15.
Google Scholar
Gonçalves RB, Sydney NV, Oliveira PS, Artmann NO. Bee and wasp responses to a fragmented landscape in southern Brazil. J Insect Conserv. 2014;18(6):1193–201.
Google Scholar
Gonzalez-Chaves A, Jaffé R, de Metzger JP, Kleinert AMP. Forest proximity rather than local forest cover affects bee diversity and coffee pollination services. Landsc Ecol. 2020;35(8):1841–55.
Google Scholar
González-Varo JP, Arroyo J, Aparicio A. Effects of fragmentation on pollinator assemblage, pollen limitation and seed production of Mediterranean myrtle (Myrtus communis). Biol Conserv. 2009;142(5):1058–65.
Google Scholar
Hermansen TD, Ayre DJ, Minchinton TE. Effects of stand size on pollination in temperate populations of the mangrove Avicennia marina. Plant Ecol. 2014;215(10):1153–62.
Google Scholar
Hipólito J, Boscolo D, Viana BF. Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. Agric Ecosyst Environ. 2018;256:218–25.
Google Scholar
Huais PY, Grilli G, Amarilla LD, Torres C, Fernández L, Galetto L. Forest fragments influence pollination and yield of soybean crops in Chaco landscapes. Basic Appl Ecol. 2020;48:61–72.
Google Scholar
Jha S, Stefanovich L, Kremen C. Bumble bee pollen use and preference across spatial scales in human-altered landscapes. Ecol Entomol. 2013;38(6):570–9.
Google Scholar
Joshi NK, Otieno M, Rajotte EG, Fleischer SJ, Biddinger DJ. Proximity to woodland and landscape structure drives pollinator visitation in apple orchard ecosystem. Front Ecol Evol. 2016;4:38.
Google Scholar
Jules ES, Rathcke BJ. Mechanisms of reduced Trillium recruitment along edges of old-growth forest fragments. Conserv Biol. 1999;13(4):784–93.
Google Scholar
Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manag. 2015;352:9–20.
Google Scholar
Keitt TH. Habitat conversion, extinction thresholds, and pollination services in agroecosystems. Ecol Appl. 2009;19(6):1561–73.
PubMed
Google Scholar
Kim J, Williams N, Kremen C. Effects of cultivation and proximity to natural habitat on ground-nesting native bees in California sunflower fields. J Kansas Entomol Soc. 2006;79(4):309–20.
Google Scholar
Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci. 2007;274(1608):303–13.
Google Scholar
Klein AM, Steffan-Dewenter I, Tscharntke T. Pollination of Coffea canephora in relation to local and regional agroforestry management. J Appl Ecol. 2003;40(5):837–45.
Google Scholar
Klein AM, Steffan-Dewenter I, Tscharntke T. Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry. J Anim Ecol. 2006;75(2):315–23.
PubMed
Google Scholar
Kline O, Joshi NK. Mitigating the effects of habitat loss on solitary bees in agricultural ecosystems. Agriculture. 2020;10(4):115.
CAS
Google Scholar
Knoll FDRN, Penatti N. Habitat fragmentation effects on the orchid bee communities in remnant forests of southeastern Brazil. Neotrop Entomol. 2012;41(5):355–65.
Google Scholar
Kremen C, Williams NM, Thorp RW. Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci. 2002;99(26):16812–6.
CAS
PubMed
PubMed Central
Google Scholar
Krishnan S, Kushalappa CG, Shaanker RU, Ghazoul J. Status of pollinators and their efficiency in coffee fruit set in a fragmented landscape mosaic in South India. Basic Appl Ecol. 2012;13(3):277–85.
Google Scholar
Landaverde-González P, Quezada-Euán JJG, Theodorou P, Murray TE, Husemann M, Ayala R, Moo-Valle H, Vandame R, Paxton RJ. Sweat bees on hot chillies: provision of pollination services by native bees in traditional slash-and-burn agriculture in the Yucatán Peninsula of tropical Mexico. J Appl Ecol. 2017;54(6):1814–24.
PubMed
PubMed Central
Google Scholar
Landsman AP, Ladin ZS, Gardner D, Bowman JL, Shriver G, D’Amico V, Delaney DA. Local landscapes and microhabitat characteristics are important determinants of urban–suburban forest bee communities. Ecosphere. 2019;10(10):e02908.
Google Scholar
Lázaro A, Fuster F, Alomar D, Totland Ø. Disentangling direct and indirect effects of habitat fragmentation on wild plants’ pollinator visits and seed production. Ecol Appl. 2020;30(5):e02099.
PubMed
Google Scholar
Lonsdorf E, Kremen C, Ricketts T, Winfree R, Williams N, Greenleaf S. Modelling pollination services across agricultural landscapes. Ann Bot. 2009;103(9):1589–600.
PubMed
PubMed Central
Google Scholar
Lopes LE, Buzato S. Variation in pollinator assemblages in a fragmented landscape and its effects on reproductive stages of a self-incompatible treelet, Psychotria suterella (Rubiaceae). Oecologia. 2007;154(2):305–14.
PubMed
Google Scholar
Martins KT, Gonzalez A, Lechowicz MJ. Pollination services are mediated by bee functional diversity and landscape context. Agric Ecosyst Environ. 2015;200:12–20.
Google Scholar
Maurer C, Bosco L, Klaus E, Cushman SA, Arlettaz R, Jacot A. Habitat amount mediates the effect of fragmentation on a pollinator’s reproductive performance, but not on its foraging behaviour. Oecologia. 2020. https://doi.org/10.1007/s00442-020-04658-0.
Article
PubMed
Google Scholar
Mayes DM, Bhatta C, Shi D, Brown J, Smith D. Body size influences stingless bee (Hymenoptera: Apidae) communities across a range of deforestation levels in Rondônia, Brazil. J Insect Sci. 2019;19(2):23.
PubMed
PubMed Central
Google Scholar
Miljanic AS, Loy X, Gruenewald DL, Dobbs EK, Gottlieb IG, Fletcher RJ, Brosi BJ. Bee communities in forestry production landscapes: interactive effects of local-level management and landscape context. Landsc Ecol. 2019;34(5):1015–32.
Google Scholar
Mitchell M. The effects of landscape structure and biodiversity on ecosystem services. McGill: McGill University Libraries; 2014.
Google Scholar
Mitchell MG, Bennett EM, Gonzalez A. Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems. 2013;16(5):894–908.
Google Scholar
Mitchell MG, Bennett EM, Gonzalez A. Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales. Environ Res Lett. 2015;10(9):094014.
Google Scholar
Mola JM, Miller MR, O’Rourke SM, Williams NM. Forests do not limit bumble bee foraging movements in a montane meadow complex. Ecol Entomol. 2020;45(5):955–65.
Google Scholar
Monasterolo M, Musicante ML, Valladares GR, Salvo A. Soybean crops may benefit from forest pollinators. Agric Ecosyst Environ. 2015;202:217–22.
Google Scholar
Murren CJ. Effects of habitat fragmentation on pollination: pollinators, pollinia viability and reproductive success. J Ecol. 2002;90(1):100–7.
Google Scholar
Nemésio A, Silveira FA. Forest fragments with larger core areas better sustain diverse orchid bee faunas (Hymenoptera: Apidae: Euglossina). Neotrop Entomol. 2010;39(4):555–61.
PubMed
Google Scholar
Nery LS, Takata JT, de Camargo BB, Chaves AM, Ferreira PA, Boscolo D. Bee diversity responses to forest and open areas in heterogeneous Atlantic Forest. Sociobiology. 2018;65(4):686–95.
Google Scholar
Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011;120(3):321–6.
Google Scholar
Olotu MI, Ndangalasi HJ, Nyundo BA. Effects of forest fragmentation on pollination of Mesogyne insignis (Moraceae) in Amani Nature Reserve forests, Tanzania. Afr J Ecol. 2012;50(1):109–16.
Google Scholar
Olsson O, Bolin A, Smith HG, Lonsdorf EV. Modeling pollinating bee visitation rates in heterogeneous landscapes from foraging theory. Ecol Model. 2015;316:133–43.
Google Scholar
Olsson O, Brown JS, Helf KL. A guide to central place effects in foraging. Theor Popul Biol. 2008;74(1):22–33.
PubMed
Google Scholar
Pavageau C, Gaucherel C, Garcia C, Ghazoul J. Nesting sites of giant honeybees modulated by landscape patterns. J Appl Ecol. 2018;55(3):1230–40.
Google Scholar
Perillo LN, de Ulhôa Barbosa NP, Solar RR, de Siqueira Neves F. Patterns of diversity in a metacommunity of bees and wasps of relictual mountainous forest fragments. J Insect Conserv. 2020;24(1):17–34.
Google Scholar
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25(6):345–53.
PubMed
Google Scholar
Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J. Safeguarding pollinators and their values to human well-being. Nature. 2016;540(7632):220–9.
CAS
PubMed
Google Scholar
Rahimi E, Barghjelveh S, Dong P. Estimating landscape structure effects on pollination for management of agricultural landscapes. Ecol Process. 2021;10:59. https://doi.org/10.1186/s13717-021-00331-3.
Article
Google Scholar
Rahimi E, Barghjelveh S, Dong P. How effective are artificial nests in attracting bees? A review. J Ecol Environ. 2021;45(1):1–11.
Google Scholar
Rahimi E, Barghjelveh S, Dong P. Using the Lonsdorf model for estimating habitat loss and fragmentation effects on pollination service. Ecol Process. 2021;10(1):1–13.
CAS
Google Scholar
Rahimi E, Barghjelveh S, Dong P, Pirlar MA, Jahanbakhshian MM. PollMap: a software for crop pollination mapping in agricultural landscapes. J Ecol Environ. 2021;45(1):1–9.
Google Scholar
Ricketts TH. Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol. 2004;18(5):1262–71.
Google Scholar
Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM. Landscape effects on crop pollination services: are there general patterns? Ecol Lett. 2008;11(5):499–515.
PubMed
Google Scholar
Ricketts TH, Williams NM, Mayfield MM. Connectivity and ecosystem services: crop pollination in agricultural landscapes. Cambridge: Cambridge University Press; 2006.
Google Scholar
Rocha-Santos L, Mayfield MM, Lopes AV, Pessoa MS, Talora DC, Faria D, Cazetta E. The loss of functional diversity: a detrimental influence of landscape-scale deforestation on tree reproductive traits. J Ecol. 2020;108(1):212–23.
Google Scholar
Romero MJ, Quezada-Euán JJG. Pollinators in biofuel agricultural systems: the diversity and performance of bees (Hymenoptera: Apoidea) on Jatropha curcas in Mexico. Apidologie. 2013;44(4):419–29.
Google Scholar
Rosa JF, Ramalho M, Arias MC. Functional connectivity and genetic diversity of Eulaema atleticana (Apidae, Euglossina) in the Brazilian Atlantic Forest Corridor: assessment of gene flow. Biotropica. 2016;48(4):509–17.
Google Scholar
Ruiz-Toledo J, Vandame R, Penilla-Navarro P, Gómez J, Sánchez D. Seasonal abundance and diversity of native bees in a patchy agricultural landscape in Southern Mexico. Agric Ecosyst Environ. 2020;292:106807.
Google Scholar
Sande SO, Crewe RM, Raina SK, Nicolson SW, Gordon I. Proximity to a forest leads to higher honey yield: another reason to conserve. Biol Cons. 2009;142(11):2703–9.
Google Scholar
Saturni FT, Jaffe R, Metzger JP. Landscape structure influences bee community and coffee pollination at different spatial scales. Agric Ecosyst Environ. 2016;235:1–12.
Google Scholar
Silva D, Nogueira D, De Marco P. Contrasting patterns in solitary and eusocial bees while responding to landscape features in the Brazilian Cerrado: a multiscaled perspective. Neotrop Entomol. 2017;46(3):264–74.
CAS
PubMed
Google Scholar
Silva DP, De Marco P. No evidence of habitat loss affecting the orchid bees Eulaema nigrita Lepeletier and Eufriesea auriceps Friese (Apidae: Euglossini) in the Brazilian Cerrado Savanna. Neotrop Entomol. 2014;43(6):509–18.
CAS
PubMed
Google Scholar
Silva M, Ramalho M, Monteiro D. Communities of social bees (Apidae: Meliponini) in trap-nests: the spatial dynamics of reproduction in an area of Atlantic Forest. Neotrop Entomol. 2014;43(4):307–13.
CAS
PubMed
Google Scholar
Silva S, Almeida N, de Siqueira K, Souza J, Castro C. Isolation from natural habitat reduces yield and quality of passion fruit. Plant Biol. 2019;21(1):142–9.
CAS
PubMed
Google Scholar
Smith TJ, Mayfield MM. The effect of habitat fragmentation on the bee visitor assemblages of three Australian tropical rainforest tree species. Ecol Evol. 2018;8(16):8204–16.
PubMed
PubMed Central
Google Scholar
Sober V, Leps M, Kaasik A, Mänd M, Teder T. Forest proximity supports bumblebee species richness and abundance in hemi-boreal agricultural landscape. Agric Ecosyst Environ. 2020;298:106961.
Google Scholar
Sritongchuay T, Hughes AC, Memmott J, Bumrungsri S. Forest proximity and lowland mosaic increase robustness of tropical pollination networks in mixed fruit orchards. Landsc Urban Plan. 2019;192:103646.
Google Scholar
Sritongchuay T, Kremen C, Bumrungsri S. Effects of forest and cave proximity on fruit set of tree crops in tropical orchards in Southern Thailand. J Trop Ecol. 2016;32(4):269–79.
Google Scholar
Stangler ES, Hanson PE, Steffan-Dewenter I. Vertical diversity patterns and biotic interactions of trap-nesting bees along a fragmentation gradient of small secondary rainforest remnants. Apidologie. 2016;47(4):527–38.
Google Scholar
Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology. 2002;83(5):1421–32.
Google Scholar
Steffan-Dewenter I, Schiele S. Do resources or natural enemies drive bee population dynamics in fragmented habitats. Ecology. 2008;89(5):1375–87.
PubMed
Google Scholar
Storck-Tonon D, Peres CA. Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. Biol Conserv. 2017;214:270–7.
Google Scholar
Suarez-Gonzalez A, Good SV. Pollen limitation and reduced reproductive success are associated with local genetic effects in Prunus virginiana, a widely distributed self-incompatible shrub. Ann Bot. 2014;113(4):595–605.
PubMed
Google Scholar
Sugiura S, Taki H. Scale-dependent effects of habitat area on species interaction networks: invasive species alter relationships. BMC Ecol. 2012;12(1):1–13.
Google Scholar
Syrbe R-U, Walz U. Spatial indicators for the assessment of ecosystem services: providing, benefiting and connecting areas and landscape metrics. Ecol Ind. 2012;21:80–8.
Google Scholar
Taki H, Kevan PG, Ascher JS. Landscape effects of forest loss in a pollination system. Landsc Ecol. 2007;22(10):1575–87.
Google Scholar
Taki H, Murao R, Mitai K, Yamaura Y. The species richness/abundance–area relationship of bees in an early successional tree plantation. Basic Appl Ecol. 2018;26:64–70.
Google Scholar
Taki H, Yamaura Y, Okabe K, Maeto K. Plantation vs. natural forest: matrix quality determines pollinator abundance in crop fields. Sci Rep. 2011;1(1):1–4.
Google Scholar
Tonhasca A Jr, Albuquerque GS, Blackmer JL. Dispersal of euglossine bees between fragments of the Brazilian Atlantic Forest. J Trop Ecol. 2003. https://doi.org/10.1017/S0266467403003122.
Article
Google Scholar
Tylianakis JM, Klein AM, Lozada T, Tscharntke T. Spatial scale of observation affects α, β and γ diversity of cavity-nesting bees and wasps across a tropical land-use gradient. J Biogeogr. 2006;33(7):1295–304.
Google Scholar
Valdovinos FS, Chiappa E, Simonetti JA. Nestedness of bee assemblages in an endemic South American forest: the role of pine matrix and small fragments. J Insect Conserv. 2009;13(4):449–52.
Google Scholar
Viana BF, Boscolo D, Mariano Neto E, Lopes LE, Lopes AV, Ferreira PA, Pigozzo CM, Primo LM. How well do we understand landscape effects on pollinators and pollination services? J Pollinat Ecol. 2012. https://doi.org/10.26786/1920-7603(2012)2.
Article
Google Scholar
Vides-Borrell E, Porter-Bolland L, Ferguson BG, Gasselin P, Vaca R, Valle-Mora J, Vandame R. Polycultures, pastures and monocultures: effects of land use intensity on wild bee diversity in tropical landscapes of southeastern Mexico. Biol Conserv. 2019;236:269–80.
Google Scholar
Wayo K, Sritongchuay T, Chuttong B, Attasopa K, Bumrungsri S. Local and landscape compositions influence stingless bee communities and pollination networks in tropical mixed fruit orchards, Thailand. Diversity. 2020;12(12):482.
Google Scholar
Williams NM, Kremen C. Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecol Appl. 2007;17(3):910–21.
PubMed
Google Scholar
Willmer PG, Cunnold H, Ballantyne G. Insights from measuring pollen deposition: quantifying the pre-eminence of bees as flower visitors and effective pollinators. Arthropod Plant Interact. 2017;11(3):411–25.
Google Scholar
Winfree R, Williams NM, Gaines H, Ascher JS, Kremen C. Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. J Appl Ecol. 2008;45(3):793–802.
Google Scholar
Wray JC, Neame LA, Elle E. Floral resources, body size, and surrounding landscape influence bee community assemblages in oak-savannah fragments. Ecol Entomol. 2014;39(1):83–93.
Google Scholar
Zimmermann Y, Schorkopf D, Moritz R, Pemberton R, Quezada-Euan J, Eltz T. Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes. Conserv Genet. 2011;12(5):1183–94.
Google Scholar
Zurbuchen A, Bachofen C, Müller A, Hein S, Dorn S. Are landscape structures insurmountable barriers for foraging bees? A mark-recapture study with two solitary pollen specialist species. Apidologie. 2010;41(4):497–508.
Google Scholar
Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S. Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Cons. 2010;143(3):669–76.
Google Scholar