Abedinpour M, Sarangi A, Rajput TBS, Singh M, Pathak H, Ahmad T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric Water Manag. 2012;110:55–66.
Article
Google Scholar
Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, No. 56. FAO, Rome.
Alter GC, Vardigan M. Addressing global data sharing challenges. J Empir Res Hum Res Ethics. 2015;10(3):317–23.
Article
PubMed
PubMed Central
Google Scholar
Amanullah MJH, Nawab K, Ali A. Response of specific leaf area (SLA), leaf area index (LAI) and leaf area ratio (LAR) of maize (Zea mays L.) to plant density, rate and timing of nitrogen application. World Appl Sci J. 2007;2(3):235–43.
Google Scholar
Annandale JG, Steyn JM, Benadé N, Jovanovic NZ, Soundy P (2005) Technology transfer of the soil water balance (SWB) model as a user friendly irrigation scheduling tool. WRC report No. TT251/05.
Araya A, Kisekka I, Holman J. Evaluating deficit irrigation management strategies for grain sorghum using AquaCrop. Irrig Sci. 2016;34(6):465–81.
Article
Google Scholar
Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Zhu Y. Rising temperatures reduce global wheat production. Nat Clim Change. 2014;5(2014):143–7. https://doi.org/10.1038/nclimate2470.
Article
Google Scholar
Atzberger C. Advances in RS of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sens. 2013;5:949–81.
Article
Google Scholar
Audsley E, Trnka M, Sabaté S, Maspons J, Sanchez A, Sandars D, Pearn K. Interactively modelling land profitability to estimate European agricultural and forest land use under future scenarios of climate, socio-economics and adaptation. Clim Change. 2015;128(3–4):215–27.
Article
Google Scholar
Basso B, Ritchie JT, Hamilton SK, Doll, JE, Robertson, GP (2015). The ecology of agricultural landscapes: long-term research on the path to sustainability.
Bassu S, Brisson N, Durand JL, Boote K, Lizaso J, Jones JW, Basso B. How do various maize crop models vary in their responses to climate change factors? Glob Change Biol. 2014;20(7):2301–20.
Article
Google Scholar
Bationo A, Hartemink A, Lungu O, Naimi M, Okoth P, Smaling E, Waswa B. Knowing the African soils to improve fertilizer recommendations. Improving soil fertility recommendations in Africa using the decision support system for agrotechnology transfer (DSSAT). Dordrecht: Springer; 2012. p. 19–42.
Chapter
Google Scholar
Batjes NH (2012). ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid (ver. 1.2) (No. 2012/01). ISRIC-World Soil Information.
Battisti R, Sentelhas PC, Boote KJ. Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field crops Res. 2017;200:28–37.
Article
Google Scholar
Bechini L, Bocchi S, Maggiore T, Confalonieri R. Parameterization of a crop growth and development simulation model at sub-model components level. An example for winter wheat (Triticum aestivum L.). Environ Model Softw. 2006;21:1042–54.
Article
Google Scholar
Beletse YG, Durand W, Nhemachena C, Crespo O, Tesfuhuney WA, Jones MR, Teweldemedhin MY, Gamedze SM, Bonolo PM, Jonas S, Walker S, Gwimbi P, Mpuisang TN, Cammarano D, Valdivia RO 2015. Projected Impacts of Climate Change Scenarios on the Production of Maize in Southern Africa: An Integrated Assessment Case Study of the Bethlehem District, Central Free State, South Africa. Part 2, Section I, Chapter 4, in: Daniel Hillel & Cynthia Rosenzweig (Editors). Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project Integrated Crop and Economic Assessments.
Bello ZA, Walker S. Calibration and validation of AquaCrop for pearl millet (Pennisetum glaucum). Crop Pasture Sci. 2016;67(9):948–60.
Article
Google Scholar
Bergez JE, Raynal H, Launay M, Beaudoin N, Casellas E, Caubel J, Justes E. Evolution of the STICS crop model to tackle new environmental issues: new formalisms and integration in the modelling and simulation platform RECORD. Environ Model Softw. 2014;62:370–84.
Article
Google Scholar
Bhatia AK. Crop growth simulation modeling. In: Basu SK, Kumar N, editors. Modelling and simulation of diffusive processes. Cham, The Netherlands: Springer; 2014. p. 315–32.
Chapter
Google Scholar
Boegh E, Thorsen M, Butts MB, Hansen S, Christiansen JS, Abrahamsen P, Thomsen A. Incorporating RS data in physically based distributed agro-hydrological modelling. J Hydrol. 2004;287:279–99.
Article
Google Scholar
Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, et al. An overview of the crop model STICS. Eur J Agron. 2008;18:309–32.
Article
Google Scholar
Brown I, Towers W, Rivington M, Black HIJ. Influence of climate change on agricultural land-use potential: adapting and updating the land capability system for Scotland. Clim. Res. 2008;37:43–57.
Article
Google Scholar
Burrough PA, McDonnell RA. Principles of geographical information systems. Oxford: Oxford University Press; 1998.
Google Scholar
Calzadilla A, Zhu T, Rehdanz K, Tol RS, Ringler C. Climate change and agriculture: impacts and adaptation options in South Africa. Water Resour Econ. 2014;5:24–48.
Article
Google Scholar
Campbell, E., & Blumenthal, D. (2002). The selfish gene: data sharing and withholding in academic genetics. Science Career Magazine.
Carberry P, Gladwin C, Twomlow SJ (2004) Linking simulation modeling to participatory research in smallholder farming systems. In: Delve RJ, Probert ME (eds) Modelling nutrient management in tropical cropping systems. ACIAR Proceedings No. 114. ACIAR, Canberra, pp 32–46.
Challinor AJ, Müller C, Asseng S, Deva C, Nicklin KJ, Wallach D, Koehler AK. Improving the use of crop models for risk assessment and climate change adaptation. Agric Syst. 2018;159:296–306.
Article
PubMed
PubMed Central
Google Scholar
Challinor AJ, Osborne T, Morse A, Shaffrey L, Wheeler T, Weller H, Vidale PL. Methods and resources for climate impacts research: achieving synergy. Bull Am Meteor Soc. 2009;90(6):836–48.
Article
Google Scholar
Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N. A meta-analysis of crop yield under climate change and adaptation. Nat Clim Change. 2014;4(4):287–91.
Article
Google Scholar
Chaudhury M, Vervoort J, Kristjanson P, Ericksen P, Ainslie A. Participatory scenarios as a tool to link science and policy on food security under climate change in East Africa. Reg Environ Change. 2013;13(2):389–98.
Article
Google Scholar
Chibarabada TP, Modi AT, Mabhaudhi T. Calibration and evaluation of aquacrop for groundnut (Arachis hypogaea) under water deficit conditions. Agric For Meteorol. 2020;281:107850.
Article
Google Scholar
Chipanshi AC, Chanda R, Totolo O. Vulnerability assessment of the maize and sorghum crops to climate change in Botswana. Climatic Change. 2003;61:339–60.
Article
Google Scholar
Chisanga CB, Phiri E, Chinene VR. Climate change impact on maize (Zea mays L.) yield using crop simulation and statistical downscaling models: a review. Sci Res Essays. 2017;12(18):167–87.
Article
Google Scholar
Choruma DJ, Balkovic J, Odume ON. Calibration and validation of the EPIC model for maize production in the Eastern Cape, South Africa. Agronomy. 2019;9(9):494.
Article
CAS
Google Scholar
Claessens L, Antle JM, Stoorvogel JJ, Valdivia RO, Thornton PK, Herrero M. A method for evaluating climate change adaptation strategies for small-scale farmers using survey, experimental and modeled data. Agric Syst. 2012;111:85–95.
Article
Google Scholar
Clevers J, Vonder OW, Jongschaap REE, Desprats JF, King C, Prevot L, Bruguier N. Using SPOT data for calibrating a wheat growth model under mediterranean conditions. Agronomie. 2002;22(6):687–94. https://doi.org/10.1051/agro:2002038.
Article
Google Scholar
Corbeels M, Chirat G, Messad S, Thierfelder C. Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. Eur J Agron. 2016;76:41–53.
Article
Google Scholar
Craufurd PQ, Vadez V, Jagadish SK, Prasad PV, Zaman-Allah M. Crop science experiments designed to inform crop modeling. Agric For Meteorol. 2013;170:8–18.
Article
Google Scholar
Dadhwal VK. (2003). Crop growth and productivity monitoring and simulation using remote sensing and GIS. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, 263-289.
Delecolle R, Maas SJ, Guerif M, Baret F. RS and crop production models: present trends, ISPRS. J Photogramm Remote Sens. 1992;47:145–61.
Article
Google Scholar
Dennedy-Frank PJ, Muenich RL, Chaubey I, Ziv G. Comparing two tools for ecosystem service assessments regarding water resources decisions. J Environ Manage. 2016;177:331–40.
Article
PubMed
Google Scholar
Dimes J, Shamudzarira Z, Myers RJK (2002b) Employing new tools in INRM: linking simulation models and participatory research in smallholder farming systems. Special Proceedings of INRM workshop. August 28– 31, 2001. CIAT, Cali, Colombia.
Dimes J, Twomlow S, & Carberry P (2002a) Application of APSIM in smallholder farming systems in the semiarid tropics. In: Bontkes TS, Wopereis MCS (eds) A practical guide to decision-support tools for smallholder agriculture in sub-Saharan Africa. International Center for Soil Fertility and Agricultural Development (IFDC). Africa Division BP 4483, Lome´ Togo, pp 85–99.
Donatelli M, Fumagalli D, Zucchini A, Duveiller G, Nelson RL, Baruth B (2012). A EU 27 database of daily weather data derived from climate change scenarios for use with crop simulation models.
Donatelli M, Stockle C, Ceotto E, Rinaldi M. Evaluation of CropSyst for cropping systems at two locations of northern and southern Italy. Eur J Agron. 1997;6:35–45.
Article
Google Scholar
Donatelli M, Fumagalli D, Zucchini A, Duveiller G, Nelson RL, Baruth B. A EU 27 database of daily weather data derived from climate change scenarios for use with crop simulation models; 2012.
Doorenbos J, Kassam AH. Groundnut. In: Yield response to water. FAO Irrigation and Drainage Paper 33. Rome: FAO; 1986. p. 97–100.
Doraiswamya PC, Sinclair TR, Hollingerc S, Akhmedovd B, Sterna A, Pruegere J. Application of MODIS derived parameters for regional crop yield assessment. RS Environ. 2005;97:192–202.
Google Scholar
Du Plessis, M. (2016). Agriculture: Facts and trends South Africa. Online: http://awsassets.wwf.org.za/downloads/facts_brochure_mockup_04_b.pdf. WWF-SA. Accessed: October.
Durr C, Constantin J, Wagner MH, Navier H, Demilly D, Goertz S, Nesi N. Virtual modeling based on deep phenotyping provides complementary data to field experiments to predict plant emergence in oilseed rape genotypes. Eur J Agron. 2016;79:90–9.
Article
Google Scholar
Dzotsi KA, Basso B, Jones JW. Development, uncertainty and sensitivity analysis of the simple SALUS crop model in DSSAT. Ecol Model. 2013;260:62–76.
Article
Google Scholar
El-Sharkawy MA. Overview: early history of crop growth and photosynthesis modeling. BioSystems. 2011;103:205–2011.
Article
CAS
PubMed
Google Scholar
Engelbrecht F, Adegoke J, BopapeMM Naidoo M, Garland R, Thatcher M, McGregor J, Katzfey J, Werner M, Ichoku C, Gatebe C. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ Res Lett. 2015. https://doi.org/10.1088/1748-9326/10/8/085004.
Article
Google Scholar
Engelbrecht F, McGregor J, Engelbrecht C. Dynamics of the Conformal-Cubic Atmospheric Model projected climate-change signal over southern Africa. Int J Climatol. 2009;29:1013–33.
Article
Google Scholar
Engelbrecht FA, Landman WA, Engelbrecht CJ, Landman S, Bopape MM, Roux B, McGregor JL, Thatcher M. Multi-scale climate modelling over southern Africa using a variable-resolution global model. Water SA. 2011;37:647–58.
Article
Google Scholar
Engelbrecht C, Engelbrecht F, Dyson L. High-resolution modelprojected changes in mid-tropospheric closed-lows and extreme rainfall events over southern Africa. Int J Climatol. 2012;33(1):173–87.
Article
Google Scholar
Estes LD, Beukes H, Bradley BA, Debats SR, Oppenheimer M, Ruane AC, Tadross M. Projected climate impacts to S outh A frican maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches. Glob Change Biol. 2013;19(12):3762–74.
Article
Google Scholar
Faurès JM, Bartley D, Bazza M, Burke J, Hoogeveen J, Soto D, Steduto P. Climate smart agriculture sourcebook. Rome: FAO; 2013. p. 557.
Google Scholar
Folberth C, et al. Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change. Environ Res Lett. 2014;9:044004.
Article
Google Scholar
Folberth C, Gaiser T, Abbaspour KC, Schulin R, Yang H. Regionalization of a large-scale crop growth model for sub-Saharan Africa: model setup, evaluation, and estimation of maize yields. Agr Ecosyst Environ. 2012;151:21–33.
Article
Google Scholar
Food and Agriculture Organization of the United Nations (FAO). CROPWAT: A Computer Program for Irrigation Planning andManagement. Rome: Food and Agriculture Organization of the United Nations; 1992.
Google Scholar
Gaiser T, de Barros I, Sereke F, Lange F. Validation and reliability of the EPIC model to simulate maize production in small-holder farming systems in tropical sub-humid West Africa and semi-arid Brazil. Agr Ecosyst Environ. 2010;135:318–27.
Article
Google Scholar
Gijsman AJ, Thornton PK, Hoogenboom G. Using the WISE database to parameterize soil inputs for crop simulation models. Comput Electr Agric. 2007;56(2):85–100.
Article
Google Scholar
Gornott C, Wechsung Frank. Level normalized modeling approach of yield volatility for winter wheat and silage maize on different scales within Germany. J fur Kulturpflanzen. 2015;67:205–23. https://doi.org/10.5073/JFK.2015.06.01.
Article
Google Scholar
Gowda YP, Satyareddi S, Manjunatha S. Crop growth modeling: a review. Res Rev. 2013;2(1):1.
Google Scholar
Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inf Libr J. 2009;26(2):91–108.
Article
Google Scholar
Greaves GE, Wang YM. Identifying irrigation strategies for improved agricultural water productivity in irrigated maize production through crop simulation modelling. Sustainability. 2017;9(4):630.
Article
Google Scholar
Hadebe ST, Modi AT, Mabhaudhi T. Calibration and testing of AquaCrop for selected sorghum genotypes. Water SA. 2017;43(2):209–21.
Article
Google Scholar
Hansen JW, Jones JW. Scaling-up crop models for climate variability applications. Agric Syst. 2000;65(1):43–72. https://doi.org/10.1016/s0308-521x(00)00025-1.
Article
Google Scholar
Hewitson BC, Crane RG. Consensus between GCM climate change projections with empirical downscaling: precipitation downscaling over South Africa. Int J Climatol. 2006;26:1315–37.
Article
Google Scholar
Hewitson BC, Daron J, Crane RG, Zermoglio MF, Jack C. Interrogating empirical-statistical downscaling. Clim Chang. 2013;122:539–54. https://doi.org/10.1007/s10584-013-1021-z.
Article
Google Scholar
Hobbs TJ, Neumann CR, Meyer WS, Moon T, Bryan BA. Models of reforestation productivity and carbon sequestration for land use and climate change adaptation planning in South Australia. J Environ Manage. 2016;181:279–88.
Article
PubMed
Google Scholar
Hodson D, White J. GIS and crop simulation modelling applications in climate change research. Climate change and crop production. Wallingford: CABI Publishers; 2010. p. 245–62.
Book
Google Scholar
Hoffmann MP, Odhiambo JJ, Koch M, Ayisi KK, Zhao G, Soler AS, Rötter RP. Exploring adaptations of groundnut cropping to prevailing climate variability and extremes in Limpopo Province, South Africa. Field Crops Res. 2018;219:1–13.
Article
Google Scholar
Holzkämper A. Adapting agricultural production systems to climate change—what’s the use of models? Agriculture. 2017;7(10):86.
Article
Google Scholar
Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, Moore AD. APSIM–evolution towards a new generation of agricultural systems simulation. Environ Model & Softw. 2014;62:327–50.
Article
Google Scholar
Hoogenboom G, Porter CH, Boote KJ, Shelia V, Wilkens PW, Singh U, White JW, Asseng S, Lizaso JI, Moreno LP, Pavan W, Ogoshi R, Hunt LA, Tsuji GY, Jones JW. The DSSAT crop modeling ecosystem. In: Boote KJ, editor. Advances in crop modeling for a sustainable agriculture. Cambridge: Burleigh Dodds Science Publishing; 2019. p. 173–216. https://doi.org/10.19103/AS.2019.0061.10.
Chapter
Google Scholar
Hoogenboom G, Jones JW, Traore PC, Boote KJ. Experiments and data for model evaluation and application. Improving soil fertility recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT)). Dordrecht: Springer; 2012. p. 9–18.
Chapter
Google Scholar
Hunt LA, Boote KJ. Data for model operation, calibration, and evaluation. In: Understanding options for agricultural production. Dordrecht: Springer; 1998. p. 9–39.
Chapter
Google Scholar
Jame YW, Cutforth HW. Crop growth models for decision support systems. Can J Plant Sci. 1996;76(1):9–19.
Article
Google Scholar
Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, Keating BA. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric Syst. 2017;155:269–88.
Article
PubMed
PubMed Central
Google Scholar
Jones JW, Keating BA, Porter CH. Approaches to modular model development. Agric Syst. 2001;70(2–3):421–43.
Article
Google Scholar
Jones J, Hoogenboom G, Porter C, Boote K, Batchelor W, Hunt L, Wilkens P, Singh U, Gijsman A, Ritchie J. The DSSAT cropping system model. Eur J Agron. 2003;18:235–65.
Article
Google Scholar
Jones JW, Antle JM, Bruno B, Boote KJ, Conant RT, Foster I, Godfray HC, et al. Brief history of agricultural systems modeling. Agric Syst. 2017;155:240–54.
Article
PubMed
PubMed Central
Google Scholar
Jones MR, Singels A, Thorburn P, Marin F, Martine JF, Chinorumba S, Nunez O. Evaluation of the DSSAT-Canegro model for simulating climate change impacts at sites in seven countries. Proc Afr Sugarcane Technol Assoc. 2014;87:323–9.
Google Scholar
Jongschaap R, Schouten L. Predicting wheat production at regional scale by integration of RS data with a simulation model. Agron Sustain Dev. 2005;25:481–9.
Article
Google Scholar
Jongschaap REE. Run-time calibration of simulation models by integrating RS estimates of leaf area index and canopy nitrogen. Eur J Agron. 2006;24:328–36.
Article
Google Scholar
Kadiyala MDM, Nedumaran S, Singh P, Chukka S, Irshad MA, Bantilan MCS. An integrated crop model and GIS decision support system for assisting agronomic decision making under climate change. Sci Total Environ. 2015;521:123–34.
Article
PubMed
CAS
Google Scholar
Kasampalis DA, Alexandridis TK, Deva C, Challinor A, Moshou D, Zalidis G. Contribution of remote sensing on crop models: a review. J Imaging. 2018;4(4):52.
Article
Google Scholar
Katerji N, Campi P, Mastrorilli M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agric Water Manag. 2013;130:14–26.
Article
Google Scholar
Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, et al. An overview of APSIM, a model designed for farming systems simulation. Eur J Agron. 2003;18:267–88.
Article
Google Scholar
Khan MI, Walker D. Application of crop growth simulation models in agriculture with special reference to water management planning. Int J Core Eng Manag. 2015;2(5):113–30.
Google Scholar
Khan, M. R. (2011). Crops from space: improved earth observation capacity to map crop areas and to quantify production. (180), University of Twente Faculty of Geo-Information and Earth Observation (ITC), Enschede. Retrieved from http://www.itc.nl/library/papers_2011/phd/khan.pdf.
Knox JW, Rodríguez Díaz JA, Nixon DJ, Mkhwanazi M. A preliminary assessment of climate change impacts on sugarcane in Swaziland. Agric Syst. 2010;103:63–72.
Article
Google Scholar
Kollongei KJ, Lorentz SA. Modelling hydrological processes, crop yields and NPS pollution in a small sub-tropical catchment in South Africa using ACRU-NPS. Hydrol Sci J. 2015;60(11):2003–28.
CAS
Google Scholar
Koopman MM, De Jager K. Archiving South African digital research data: how ready are we? S Afr J Sci. 2016;112(7–8):1–7.
Google Scholar
Landman WA, Engelbrecht F, Hewitson B, Malherbe J, Van der Merwe J. Towards bridging the gap between climate change projections and maize producers in South Africa. Theoret Appl Climatol. 2018;132(3–4):1153–63.
Article
Google Scholar
Launay M, Guerif M. Assimilating RS data into a crop model to improve predictive performance for spatial applications. Agr Ecosyst Environ. 2005;111(1–4):321–39. https://doi.org/10.1016/j.agee.2005.06.005.
Article
Google Scholar
Liang H, Hu K, Batchelor WD, Qi Z, Li B. An integrated soil-crop system model for water and nitrogen management in North China. Sci Rep. 2016;6:25755.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. Prioritizing climate change adaptation needs for food security in 2030. Science. 2008;319:607–10.
Article
CAS
PubMed
Google Scholar
Lobell DB, Field CB, Cahill KN, Bonfils C. Impacts of future climate change on California perennial crop yields: model projections with climate and crop uncertainties. Agric For Meteorol. 2006;141:208–18.
Article
Google Scholar
Lüke A, Hack J (2017) Modelling Hydrological Ecosystem Services–A state of the art model comparison. Hydrology and Earth System Sciences Discussions, 1-29.
Maas SJ. Use of remotely-sensed information in agricultural crop growth models. Ecol. Modelling. 1988;41:247–68.
Article
Google Scholar
Mabhaudhi T, Modi AT, Beletse YG. Parameterisation and evaluation of the FAO-AquaCrop model for a South African taro (Colocasia esculenta L. Schott) landrace. Agric For Meteorol. 2014;192:132–9.
Article
Google Scholar
Mabhaudhi T, Modi AT, Beletse YG. Parameterization and testing of AquaCrop for a South African bambara groundnut landrace. Agron J. 2014;106(1):243–51.
Article
Google Scholar
Mabhaudhi T, Modi AT, Beletse YG. Parameterization and testing of AquaCrop for a South African bambara groundnut landrace. Agron J. 2013;106(1):243–51.
Article
Google Scholar
Malherbe J, Landman WA, Olivier C, Sakuma H, Luo JJ. Seasonal forecasts of the SINTEX-F coupled model applied to maize yield and streamflow estimates over north-eastern South Africa. Meteorol Appl. 2014;21(3):733–42.
Article
Google Scholar
Malinga R, Gordon LJ, Jewitt G, Lindborg R. Mapping ecosystem services across scales and continents–a review. Ecosyst Serv. 2015;13:57–63.
Article
Google Scholar
Malviya S, Priyanka N, Irfan-Ullah M, Davande S, Joshi PK. Distribution potential of Simarouba Glauca under climate change-strategizing rural livelihood adaptation. Int J Geoinform. 2013;9(1):31–7.
Google Scholar
Mangrule VN, Umesh JK. Watershed planning and development plan by using RS and GIS of Khultabad Taluka of Aurangabad District. Int J Inf Comput Technol. 2013;3(10):1093–100.
Google Scholar
Maponya P, Mpandeli S. Climate change and agricultural production in South Africa: impacts and adaptation options. J Agric Sci. 2012;4(10):48.
Google Scholar
Masikati, P., Homann-Kee Tui, S., Descheemaeker, K., Crespo, O., Walker, S., Lennard, C. J., & Valdivia, R. O. (2015). Crop–livestock intensification in the face of climate change: exploring opportunities to reduce risk and increase resilience in southern Africa by using an integrated multi-modeling approach.
Masikati P, Manschadi A, Van Rooyen A, Hargreaves J. Maize–mucuna rotation: an alternative technology to improve water productivity in smallholder farming systems. Agric Syst. 2014;123:62–70.
Article
Google Scholar
Mbangiwa NC, Savage MJ, Mabhaudhi T. Modelling and measurement of water productivity and total evaporation in a dryland soybean crop. Agric For Meteorol. 2019;266:65–72.
Article
Google Scholar
Mathobo R, Marais D, Steyn JM. The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agric Water Manag. 2017;180:118–25.
Article
Google Scholar
McGregor JL (2005) C-CAM: geometric aspects and dynamical formulation.CSIRO Atmospheric Research Technical Paper, No 70, 41.
McGregor JL, Dix MR. The CSIRO conformal-cubic atmospheric GCM. In: Hodnett PF, editor. Proc. IUTAM Symposium on advances in mathematical modelling of atmosphere and ocean dynamics. Dordrecht: Kluwer; 2001. p. 197–202.
Chapter
Google Scholar
McGregor JL, Dix MR. An updated description of the conformal cubic atmospheric model. In: Hamilton K, Ohfuchi W, editors. High resolution simulation of the atmosphere and ocean. Berlin: Springer Verlag; 2008. p. 51–76.
Google Scholar
Mirsafi ZS, Sepaskhah AR, Ahmadi SH, Kamgar-Haghighi AA. Assessment of AquaCrop model for simulating growth and yield of saffron (Crocus sativus L.). Sci Hortic. 2016;211:343–51.
Article
Google Scholar
Monteith JL, Moss CJ. Climate and the efficiency of crop production in Britain [and Discussion]. Philos Trans R Soc Lond Series B Biol Sci. 1977;281:277–94. https://doi.org/10.1098/rstb.1977.01.
Article
Google Scholar
Montoya F, Camargo D, Ortega JF, Córcoles JI, Domínguez A. Evaluation of Aquacrop model for a potato crop under different irrigation conditions. Agric Water Manag. 2016;164:267–80.
Article
Google Scholar
Motha RP. Use of crop models for drought analysis; 2011.
Moulin S, Bondeau A, Delecolle R. Combining agricultural crop models and satellite observations: from field to regional scales. Int J Remote Sens. 1998;19(6):1021–36.
Article
Google Scholar
Mustafa SMT, Vanuytrecht E, Huysmans M. Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh. Agric Water Manag. 2017;191:124–37.
Article
Google Scholar
Ncube B, Dimes JP, Twomlow S, Mupangwa W, Giller KE. Raising the productivity of smallholder farms under semi-arid conditions by use of small doses of manure and nitrogen: a case of participatory research. Nutr Cycl Agroecosyst. 2006;77:53–67.
Article
Google Scholar
Ngwira AR, Aune JB, Thierfelder C. DSSAT modelling of conservation agriculture maize response to climate change in Malawi. Soil Tillage Res. 2014;143:85–94.
Article
Google Scholar
Nix, H.A. Minimum Data Sets for Agrotechnology Transfer. In Proceedings of the International Symposium on Minimum Data Sets for Agrotechnology Transfer, ICRISAT Center, Patancheru, India, 21–26 March 1983; ICRISATCenter: Patancheru, India, 1983; pp. 181–188.
Nyathi MK, Van Halsema GE, Annandale JG, Struik PC. Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes. Agric Water Manag. 2018;208:107–19.
Article
Google Scholar
Oteng-Darko P, Yeboah S, Addy SNT, Amponsah S, Danquah EO. Crop modeling: a tool for agricultural research–A. J Agricultural Res Develop. 2013;2(1):001–6.
CAS
Google Scholar
Palosuo T, Kersebaum KC, Angulo C, Hlavinka P, Moriondo M, Olesen JE, Rotter R. Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. Eur J Agron. 2011;35(3):103–14. https://doi.org/10.1016/j.eja.2011.05.001.
Article
Google Scholar
Paredes P, de Melo-Abreu JP, Alves I, Pereira LS. Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agric Water Manag. 2014;144:81–97.
Article
Google Scholar
PatriciaO Yeboah S, Addy SN, Amponsah S, Owusu DE. Crop modeling: a tool for agricultural research–a review. J Agric Res Dev. 2013;2(1):1–6.
CAS
Google Scholar
Pawar GS, Kale MU, Lokhande JN. Response of AquaCrop model to different irrigation schedules for irrigated cabbage. Agric Res. 2017;6(1):73–81.
Article
Google Scholar
Pelizaro C, Benke K, Sposito V. A modelling framework for optimisation of commodity production by minimising the impact of climate change. Appl Spat Anal Policy. 2011;4:201–22.
Article
Google Scholar
Porter CH, Villalobos C, Holzworth D, Nelson R, White JW, Athanasiadis IN, Zhang M. Harmonization and translation of crop modeling data to ensure interoperability. Environ Model Softw. 2014;62:495–508.
Article
Google Scholar
Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, & Travasso MI (2014) Food security and food production systems.
Porter JR, Jamieson PD, Wilson DR. Comparison of the wheat simulation models Afrcwheat2, Ceres-wheat and Swheat for non-limiting conditions of crop growth Fields. Crop Res. 1993;33:131–57.
Article
Google Scholar
Prell C, Hubacek K, Reed M, Quinn C, Jin N, Holden J, Burt T, Kirby M, Sendzimir J. If you have a hammer everything looks like a nail: traditional versus participatory model building. Interdiscip Sci Rev. 2013;32(3):263–82.
Article
Google Scholar
Prévot L, Chauki H, Troufleau D, Weiss M, Baret F, Brisson N. Assimilating optical and radar data into the STICS crop model for wheat. Agronomie. 2003;23:297–303.
Article
Google Scholar
Raes D, Steduto P, Hsiao TC, Fereres E. Reference manual for AquaCrop version 6.0. Rome, Italy: Food and Agriculture Organization; 2017.
Google Scholar
Ramirez-Villegas J, Watson J, Challinor AJ. Identifying traits for genotypic adaptation using crop models. J Exp Bot. 2015;66(12):3451–62.
Article
CAS
PubMed
Google Scholar
Rauff KO, Bello R. A review of crop growth simulation models as tools for agricultural meteorology. Agric Sci. 2015;06:1098–105.
Google Scholar
Razzaghi F, Zhou Z, Andersen MN, Plauborg F. Simulation of potato yield in temperate condition by the AquaCrop model. Agric Water Manag. 2017;191:113–23.
Article
Google Scholar
Redhead JW, May L, Oliver TH, Hamel P, Sharp R, Bullock JM. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci Total Environ. 2018;610:666–77.
Article
PubMed
CAS
Google Scholar
Redhead JW, Stratford C, Sharps K, Jones L, Ziv G, Clarke D, Bullock JM. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci Total Environ. 2016;569:1418–26.
Article
PubMed
CAS
Google Scholar
Reidsma P, Ewert F, Lansink AO, Leemans R. Vulnerability and adaptation of European farmers: a multi-level analysis of yield and income responses to climate variability. Reg Environ Change. 2009;9(1):25.
Article
Google Scholar
Renaud-Gentié C, Dijkman TJ, Bjørn A, Birkved M. Pesticide emission modelling and freshwater ecotoxicity assessment for Grapevine LCA: adaptation of PestLCI 2.0 to viticulture. Int J Life Cycle Assess. 2015;20(11):1528–43.
Article
Google Scholar
Reynolds MP, Braun HJ, Cavalieri AJ, Chapotin S, Davies WJ, Ellul P, Nelson J. Improving global integration of crop research. Science. 2017;357(6349):359–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reynolds M, Kropff M, Crossa J, Koo J, Kruseman G, Molero Milan A, Vadez V. Role of modelling in international crop research: overview and some case studies. Agronomy. 2018;8(12):291.
Article
Google Scholar
Richardson AJ, Wiegand CL, Arkin GF, Nixon PR, Gerbermann AH. Remotely sensed spectral indicators of sorghum development and their use in growth modelling. Agric Meteorol. 1982;26:11.
Article
Google Scholar
Ritchie JT, Godwin DC, Singh U. Soil and weather inputs for the Ibsnat crop models. In: Proceedings of the Ibsnat symposium: decision support system for agrotechnology transfer, Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, Hawaii, USA; 1990. p. 31–45.
Ritchie JT, Singh U, Godwin DC, Bowen WT. Cereal growth, development and yield. In understanding options for agricultural production. Dordrecht: Springer; 1998. p. 79–98.
Book
Google Scholar
Rohrbach, D.D., 1999. Linking crop simulation modelling and farmers participatory research to improve soil productivity in drought-prone environments. In: Risk management for maize farmers in drought-prone areas of Southern Africa. Proceedings of a Workshop, 1–3 Oct 1997, Kadoma Ranch, Zimbabwe. DF: CIMMYT, Mexico, pp 1–3.
Romero CC, Hoogenboom G, Baigorria GA, Koo J, Gijsman AJ, Wood S. Reanalysis of a global soil database for crop and environmental modeling. Environ Model Softw. 2012;35:163–70.
Article
Google Scholar
Rosenzweig C, Jones JW, Hateld JR, Antle JM, Ruane AC, Boote KJ, Thorburn PJ, Valdivia RO, Porter CH, Janssen S, Wiebe K, Mutter CZ, Lifson S, Mencos-Contreras E, Athanasiadis I, Baigorria G, Cammarano D, Descheemaeker K, Hoogenboom G, Lizaso J, McDermid S, Wallach D, Adiku SDK, Ahmad A, Beletse Y, Dileepkumar G, Kihara J, Masikati P, Ponnusamy P, Subash N, Rao KPC, Zubair L.,2015. AgMIP Collaborators around the world “AgMIP Technical Report” USDA 59–3625–1-745.
Rötter RP, Carter TR, Olesen JE, Porter JR. Crop–climate models need an overhaul. Nat Clim Change. 2011;1(4):175–7.
Article
Google Scholar
Rötter RP, Palosuo T, Kersebaum KC, Angulo C, Bindi M, Ewert F, Trnka M. Simulation of spring barley yield in different climatic zones of Northern and Central Europe: a comparison of nine crop models. Field Crops Research. 2012;133:23–36. https://doi.org/10.1016/j.fcr.2012.03.016.
Article
Google Scholar
Ruiz-Ramos M, Ferrise R, Rodríguez A, Lorite IJ, Bindi M, Carter TR, Buis S. Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agric Syst. 2018;159:260–74.
Article
Google Scholar
Rurinda J, van Wijk MT, Mapfumo P, Descheemaeker K, Supit I, Giller KE. Climate change and maize yield in southern Africa: what can farm management do? Glob Change Biol. 2015;21(12):4588–601.
Article
Google Scholar
Schulp CJ, Burkhard B, Maes J, Van Vliet J, Verburg PH. Uncertainties in ecosystem service maps: a comparison on the European scale. PLoS ONE. 2014;9(10):e109643.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schulze RE, Durand W (2016). Maize Production in South Africa and Climate Change. In: Schulze, R.E. (ed.) Handbook for Farmers, Officials and Other Stakeholders on Adaptation to Climate Change in the Agriculture Sector within South Africa. Section C: Crops in South Africa and Climate Change, Chapter C1. .
Schulze RE, Schütte S, Wallace M (2016). Wheat Production in South Africa and Climate Change. In: Schulze, R.E. (ed.) Handbook for Farmers, Officials and Other Stakeholders on Adaptation to Climate Change in the Agriculture Sector within South Africa. Section C: Crops in South Africa and Climate Change, Chapter C2. .
Shamudzarira Z, Waddington S, Robertson MJ, Keating BA, Mushayi PT, Chiduza C, Grace P 2000. Simulating N fertiliser response in low-input farming systems 1. Fertiliser recovery and crop response. Risk Management Working Paper Series 00/05, No. 720. CIMMYT, Mexico DF.
Sharp R, Tallis HT, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer R, Vigerstol K. InVEST user’s guide. Stanford: The Natural Capital Project; 2014.
Google Scholar
Sharps K, Masante D, Thomas A, Jackson B, Redhead J, May L, Jones L. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Sci Total Environ. 2017;584:118–30.
Article
PubMed
CAS
Google Scholar
Singels A, Annandale JG, Jager JD, Schulze RE, Inman-Bamber NG, Durand W, Steyn JM. Modelling crop growth and crop water relations in South Africa: past achievements and lessons for the future. S Afr J Plant Soil. 2010;27(1):49–65.
Article
Google Scholar
Singels A, Jones M, Marin F, Ruane A, Thorburn P. Predicting climate change impacts on sugarcane production at sites in Australia, Brazil and South Africa using the Canegro model. Sugar Tech. 2014;16(4):347–55.
Article
Google Scholar
Snapp SS, Blackie MJ, Donovan C. Realigning research and extension to focus on farmers’ constraints and opportunities. Food Pol. 2003;28:349–63.
Article
Google Scholar
Snyder H. Literature review as a research methodology: An overview and guidelines. J Bus Res. 2019;104:333–9.
Article
Google Scholar
Sparrow AD, Friedel MH, Stafford Smith DM. A landscape model of shrub and herbage dynamics in Central Australia, validated by satellite data. Ecol Mod. 1997;97:197–216.
Article
Google Scholar
Statistic South Africa (STATS SA). Statistical Release: Mid-Year Population Estimates. Pretoria: Statistic South Africa (STATS SA); 2017.
Google Scholar
Steduto P, Raes D, Hsiao T, Fereres E, Heng L, Howell T, Geerts S. Concepts and applications of AquaCrop: The FAO crop water productivity model. In: Cao W, White J, Wang E, editors. Crop modeling and decision support. Berlin Heidelberg: Springer; 2009. p. 175–91.
Chapter
Google Scholar
Stöckle CO, Donatelli M, Nelson R. CropSyst, a cropping systems simulation model. Eur J Agron. 2003;18:289–307.
Article
Google Scholar
Tadross M, Jack C, Hewitson B. On RCM-based projections of change in southern African summer climate. Geophys Res Lett. 2005;32:L23713.
Article
Google Scholar
Tavakoli AR, Moghadam MM, Sepaskhah AR. Evaluation of the AquaCrop model for barley production under deficit irrigation and rainfed condition in Iran. Agric Water Manag. 2015;161:136–46.
Article
Google Scholar
Tendall DM, Gaillard G. Environmental consequences of adaptation to climate change in Swiss agriculture: an analysis at farm level. Agric Syst. 2015;132:40–51.
Article
Google Scholar
Thornton PK, Jones PG, Ericksen PJ, Challinor AJ. Agriculture and food systems in sub-Saharan Africa in a 4 C + world. Philosophical Transactions of the Royal Society. 2011;369:117–36.
Google Scholar
Tingem T, Rivington M, Bellocchi G, Colls J. Crop yield model validation for Cameroon. Theoret Appl Climatol. 2009;96:275–80.
Article
Google Scholar
Todorovic M, Albrizio R, Zivotic L, Saab MTA, Stockle C, Steduto P. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agron J. 2009;101(3):509–21. https://doi.org/10.2134/agronj2008.0166s.
Article
Google Scholar
United Nations. (2019). World population prospects 2019: Highlights (st/esa/ser. A/423).
Van Leeuwen, H.J.C.,1996. Methodology for combining optical and microwave RS in agricultural crop monitoring: The sugar beet as special case, Ph.D. thesis, Wageningen Agricultural University, The Netherlands, 248.
Vandiepen CA, Wolf J, Vankeulen H, Rappoldt C. WOFOST-a simulation-model of crop production. Soil Use Manag. 1989;5(1):16–24.
Article
Google Scholar
Vanuytrecht E, Raes D, Steduto P, Hsiao TC, Fereres E, Heng LK, Moreno PM. AquaCrop: FAO’s crop water productivity and yield response model. Environ Model Softw. 2014;62:351–60.
Article
Google Scholar
Walker, S., Bello, Z. A., Mabhaudhi, T., Modi, A. T., Beletse, Y. G., & Zuma-Netshiukhwi, G. (2012, January). Calibration of AquaCrop model to predict water requirements of traditional African vegetables. In II All Africa Horticulture Congress 1007 (pp. 943-949).
Whitbread AM, Robertson MJ, Carberry PS, Dimes JP. How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa. Eur J Agron. 2010;32(1):51–8.
Article
Google Scholar
White JW, Hoogenboom G, Kimball BA, Wall GW. Methodologies for simulating impacts of climate change on crop production. Field Crops Research. 2011;124(3):357–68.
Article
Google Scholar
Wiegand CL, Richardsons AJ, Kanemasu ET. Leaf area index estimates for wheat from LANDSAT and their implications for evapotranspiration and crop modeling. Agron J. 1979;71:336–42.
Article
Google Scholar
Willcock S, Hooftman D, Sitas N, O’Farrell P, Hudson MD, Reyers B, et al. Do ecosystem service maps and models meet stakeholders’ needs? A preliminary survey across sub-Saharan Africa. Ecosyst Serv. 2016;18:110–7.
Article
Google Scholar
Williams JR, Jones CA, Kiniry JR, Spanel DA. The epic crop growth-model. Trans ASAE. 1989;32:497–511.
Article
Google Scholar
Xiong W, Balkovič J, van der Velde M, Zhang X, Izaurralde RC, Skalský R, Obersteiner M. A calibration procedure to improve global rice yield simulations with EPIC. Ecol Model. 2014;273:128–39.
Article
Google Scholar
Yadav SB, Patel HR, Patel GG, Lunagaria MM, Karande BI, Shah AV, Pandey V. Calibration and validation of PNUTGRO (DSSAT v4. 5) model for yield and yield attributing characters of kharif groundnut cultivars in middle Gujarat region. J Agrometeorol Special. 2012;14:24–9.
Google Scholar
Yegbemey RN, Yabi JA, Aihounton GB, Paraiso A. Simultaneous modelling of the perception of and adaptation to climate change: the case of the maize producers in northern Benin. Cahiers Agricultures. 2014;23(3):177–87.
Article
Google Scholar
Yuan M, Zhang L, Gou F, Su Z, Spiertz JHJ, Van Der Werf W. Assessment of crop growth and water productivity for five C3 species in semi-arid Inner Mongolia. Agric Water Manag. 2013;122:28–38.
Article
Google Scholar
Zhang Q, Zhang J. Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change. Nat Hazards. 2016;81(2):1323–31.
Article
Google Scholar
Zhao Z, Sha Z, Liu Y, Wu S, Zhang H, Li C, et al. Modeling the impacts of alternative fertilization methods on nitrogen loading in rice production in Shanghai. Sci Total Environ. 2016;566:1595–603.
Article
PubMed
CAS
Google Scholar
Ziervogel G, New M, Archer van Garderen E, Midgley G, Taylor A, Hamann R, Warburton M. Climate change impacts and adaptation in South Africa. Wiley Interdisc Rev. 2014;5(5):605–20.
Google Scholar
Zinyengere N, Crespo O, Hachigonta S. Crop response to climate change in southern Africa: a comprehensive review. Global Planet Change. 2013;111:118–26.
Article
Google Scholar
Zinyengere N, Crespo O, Hachigonta S, Tadross M. Crop model usefulness in drylands of southern Africa: an application of DSSAT. S Afr J Plant Soil. 2015;32(2):95–104.
Article
Google Scholar
Zinyengere N, Mhizha T, Mashonjowa E, Chipindu B, Geerts S, Raes D. Using seasonal climate forecasts to improve maize production decision support in Zimbabwe. Agric For Meteorol. 2011;151(12):1792–9.
Article
Google Scholar