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Advancement and practical applications 
of rhizobacterial biofertilizers for sustainable 
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Abstract 

Agricultural intensification continues in Africa in attempts to meet the rising food demands of the equally rising 
population. However, most arable lands in the region are characterized by nutrient deficiency and over-reliance on 
synthetic fertilizers which consequently contributes to increased production costs, environmental pollution, and 
global warming. Decades of research on plant–rhizobacterial interactions have led to the formulation and commer-
cialization of rhizobacterial biofertilizers globally for sustainable soil and crop health. Nevertheless, this promising 
technology has not received much attention in Africa and remains largely unexplored due to several constraints. This 
article discusses the practical applications of rhizobacterial biofertilizers for sustainable crop production in sub-Saha-
ran Africa. The challenges of soil infertility and the use of conventional synthetic fertilizers in crop production in Africa 
are critically evaluated. An overview of the potential of rhizobacteria as biofertilizers and alternatives to synthetic 
fertilizers for soil fertility and crop productivity in the continent is also provided. The advantages that these biofertiliz-
ers present over their synthetic counterparts and the status of their commercialization in the African region are also 
assessed. Finally, the constraints facing their formulation, commercialization, and utilization and the prospects of this 
promising technology in the region are deliberated upon. Such knowledge is valuable towards the full exploitation 
and adoption of this technology for sustainable agriculture for Africa’s food security.
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Introduction
The world’s population is growing and projections are 
that Africa will contribute to about 60% of this increase 
by the year 2050 and become home to more than 2.5 bil-
lion people [1]. Agriculture is one of the pillars for food 
and economic security in Africa, employing up to 65% 
of the labor force and contributing to over 30% of the 
national gross domestic product [2]. Notwithstanding, 
the continent’s agricultural efficiency is largely affected 
by low soil fertility and nutrient deficiencies [3, 4]. The 

continuous application of artificial fertilizers in attempts 
to increase yields continues to elicit numerous concerns 
worldwide regarding the sustainability of food produc-
tion systems [5]. The problem is no longer just to pro-
duce enough food, but to do so sustainably [6]. Therefore, 
alternative and sustainable crop fertilization mechanisms 
should be embraced in Africa.

The exploitation of plant–soil microbe interactions 
is recognized as an important avenue to achieving sus-
tainable agriculture globally [7]. As such, plant rhizos-
pheres have been the center of focus of researchers for 
decades worldwide due to their importance in soil and 
crop health [8]. The bacteria associated with plant rhizo-
spheres are generally termed rhizobacteria [9]. A major-
ity of these bacteria can positively influence plant growth 
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and are referred to as plant growth-promoting rhizobac-
teria (PGPR) [10]. The PGPR can promote plant growth 
either directly or indirectly, for example through the pro-
duction of phytohormones and siderophores, solubili-
zation of nutrients, and  biological nitrogen (N) fixation 
(BNF) [11]. Many of these strains can also improve the 
ability of plants to tolerate abiotic environmental stresses 
such as soil salinity, acidity, and alkalinity [12]. The 
beneficial aspects of these bacterial communities have 
also been demonstrated in several important crops in 

different African countries (Table 1), demonstrating their 
immense potential for crop fertilization and productivity.

Biofertilizers or microbial inoculants are living micro-
organisms that can promote plant growth when directly 
applied to seeds or soil [13–15]. The use of rhizobacte-
rial biofertilizers is now gathering momentum and many 
PGPR are presently being used as inoculants to enhance 
nutrient uptake and crop yields while reducing the use of 
chemical fertilizers [16]. Although some studies in Africa 
have proven that PGPR can substantially increase plant 

Table 1  Examples of studies documenting plant growth-promoting rhizobacteria in Africa

Crop PGPR PGP effects Place of study References

Common Beans Rhizobium 285% increase in Fe, 67% increase in Zn Tanzania [17]

Rhizobium spp. Increased shoot dry weight and nodule 
weight

Kenya [18]

Rhizobium spp. Increased uptake of nutrients Tanzania [19]

Rhizobium spp. Improved yields South Africa [20]

Rhizobium Increased seed yields over control Kenya [21]

Rhizobia Significant yield increase Ghana, Kenya, Tanzania, Uganda [22]

Chickpea Rhizobium Up to 138% increase in yield Ethiopia [23]

Cowpea Rhizobia Increased yields Kenya [24]

Bradyrhizobium Improved nodulation, dry matter, and 
grain yield

Ghana [25]

Flax Azospirillum, Azotobacter 50% reduction in fertilizer use Egypt [26]

Bacillus Enhanced productivity Egypt [27]

Maize Paenibacillus alvei, B. safensis, B. pumilus, 
Lysinibacillus sphaericus

33% yield increments South Africa [28]

Azotobacter, Azospirillum 100% reduction in fertilizer use Egypt [27]

Pseudomonas, Klebsiella oxytoca, Entero-
bacter sakazakii

Increased agronomic characteristics Nigeria, Kenya [29]

Mung bean Bradyrhizobium Increased nitrogen fixation and yields Ethiopia [30]

Okra P. aeruginosa Improved growth Nigeria [31]

Azospirillum, Azotobacter 100% reduction in fertilizer use Egypt [32]

Potato Serratia, Citrobacter, Serratia Enhanced nutrient levels in tubers and 
rhizosphere soils

Kenya [33]

Rice Azolla pinnata, A. nilotica, A. filiculoides, A. 
caroliniana

Increased yield and soil N content Nigeria, South Africa, Ivory 
Coast, Togo, Senegal, and 
Kenya

[34]

Soybean Rhizobium Increased yield by 447 kg ha−1 Nigeria [35]

Bradyrhizobium japonicum Increased yield and micronutrient uptake Tanzania [17]

Rhizobium Up to 47% increase in yields Several countries [36]

Rhizobium 15–30% increase in yields Kenya [37]

Bradyrhizobium 24% increase in yields Ghana [25]

 Bradyrhizobium Significant increase in dry weight of 
shoot and grain yield

Kenya [38]

Rhizobium Increased nutrients content in soil Tanzania [39]

Rhizobium Increased yields Several countries [40]

Rhizobia Significant yield increase Ghana, Kenya, Tanzania, Uganda [22]

Sweet fennel Rhizobium Enhanced productivity Egypt [41]

Tomato Bacillus subtilis, Pseudomonas aerugi-
nosa, Klebsiella pneumonia, Citrobacter 
youngae

Enhanced seedling height, leaf area, 
number of leaves

Nigeria [42]

P. aeruginosa Improved growth Nigeria [31]



Page 3 of 12Aloo et al. Agric & Food Secur           (2021) 10:57 	

growth (Table  1), the concept of rhizobacterial biofer-
tilizers still seems far-fetched and there is very little 
applicability.

The present review discusses the advancement and 
practical applications of rhizobacterial biofertilizers as 
alternatives to synthetic fertilizers for sustainable agri-
culture in Africa. The state of soil infertility and the chal-
lenges related to the use of synthetic fertilizers for crop 
production in Africa are evaluated. An overview of the 
potential of rhizobacteria as biofertilizers and alterna-
tives to synthetic fertilizers for soil fertility and crop pro-
ductivity is also evaluated extensively.

The benefits offered by these microbial products over 
their synthetic counterparts, together with the con-
straints still facing their formulation and commercializa-
tion in Africa and the state of their commercialization in 
the continent are carefully articulated. Finally, the future 
perspectives and prospects for their advancement, com-
mercialization, and practical applications in Africa are 
provided. Such knowledge will ultimately increase the 
understanding of rhizobacterial biofertilizers and provide 
direction on how to accelerate their utilization for the 
improvement of the African agroecosystems.

The state of soil infertility in Africa
The worrying state of soil infertility in African countries 
started over two decades ago [43]. Over the years, Afri-
can soils have gradually undergone severe nutrient deple-
tion and declining fertility levels [3, 4, 44]. Many African 
soils are characterized by the deficiency of important 
plant nutrients like N, phosphorus (P), potassium (K), 
zinc (Zn), and iron (Fe) [4]. In East African soils, the defi-
ciencies of N, P, and K can be as high as 90, 50, and 50%, 
respectively [45], resulting in low crop productivity that 
threatens food security in the region [46]. Older reports 
document that Ferralsols which occupy a sizeable portion 
of Africa including Angola, Zambia, Burundi, Uganda, 
and Cameroon and others have a low capacity to supply 
essential nutrients to crops [47].

Estimates of the financial implication of soil infertility 
in Africa reveal that close to US$ 4 billion and 6 billion 
ha of land are lost annually due to nutrient mining and 
land degradation [48]. Earlier predictions also showed 
that with the ever-increasing population and demand for 
food, the available arable lands will continue to shrink 
and worsen the already low nutrient stocks in them [49]. 
Incomplete re-accumulation of nutrients in soils due to 
increasing cropping frequencies and shorter fallow inter-
vals is also anticipated [50].

According to Sanchez [43], averages of 660 kg N, 75 kg 
P, and 450 kg K ha−1 were lost in 37 African countries in 
the last 30 years alone, from approximately 202 million ha 
of cultivated land. The annual loss of N, P, and K (NPK) 

was approximated at 800,000 t for humid central Africa, 
600,000 Mt for North Africa, 1.5 Mt for East Africa, and 
8  Mt for sub-Saharan Africa (SSA) [49]. Soils in some 
African countries like Liberia and Sierra Leone and Mad-
agascar are reportedly characterized by low fertility soils 
while some South African soils are also deficient in K and 
P [51]. Both regional and national estimates of N balances 
are also negative for most SSA countries [52]. Similarly, 
the inability of African soils to supply adequate amounts 
of N for crop cultivation is well documented, yet N is the 
most important nutrient for plant growth.

The computation of African N budgets indicates that 
the soils are extremely deficient in N [53], threatening 
food production and security [43, 44]. Most of the N 
deficiencies in African soils result from mining through 
harvested crops, overgrazing, leaching, erosion, and vola-
tilization which altogether surpass what can be supplied 
in N fertilizer inputs [54]. According to Ugboh and Uleb-
sor [55], out of over 3  billion ha of arable land in SSA, 
only about half a billion is free of physical and chemical 
constraints while 17% is acidic and affects the availability 
of nutrients to plants [56]. The P deficits in most African 
countries are so huge that it would require doubling of 
the global production of potash fertilizers to sustain the 
demand [44]. Up to 80% of smallholder maize farmlands 
in Kenya are extremely deficient in P [57]. Such extreme 
P deficiencies are probably due to the low soil pH levels 
and high levels of Fe and aluminum oxides in the soils 
[58]. Potassium deficiency is similarly common in many 
African soils even though the most important food and 
cash crops in Africa such as sugarcane, bananas, and 
cocoa are extremely K-demanding and withdraw a lot of 
K from soil [1, 44].

Although micronutrients are needed by plants in very 
small quantities, their deficiencies can severely limit 
plant growth and reduce yields [59]. Generally, the exist-
ing fertilization programs in African countries are often 
focused on NPK with little regard to the multiple micro-
nutrient deficiencies [53, 58]. Consequently, the micro-
nutrient deficiencies not only reduce crop productivity, 
but also cause widespread malnutrition from the produc-
tion of food with poor nutritional quality [60].

Challenges related to the use of synthetic 
fertilizers for crop production in Africa
Fertilizers are vital inputs for sufficient food produc-
tion systems in Africa [61] since they can increase crop 
productivity multi-fold by up to 50 or 100% [44]. The 
annual average fertilizer consumption in African coun-
tries is estimated to range between 8.3 kg  ha−1 [62] and 
42.5  kg  ha−1 [63]. Such rates are reportedly the least 
globally due to the high prices, untimely availability, and 
inadequate supply of fertilizers [44, 64]. Past and recent 
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recommendations are that Africa should increase its fer-
tilizer usage to increase crop production and food secu-
rity [65]. Predictions are that the growth rate of synthetic 
fertilizer usage in Africa will be the highest globally by 
the year 2030 [66]. According to forecasts from “The 
African Green Revolution” as reported by the African 
Development Bank, fertilizer consumption in Africa is 
expected to increase from the current usage of just about 
8  kg  y−1  ha−1 to reach approximately 50  kg  y−1  ha−1 in 
the next few years [67]. Nevertheless, the costs and ben-
efits of the continued usage of these artificial fertilizers 
continue to elicit a lot of debate. Here, we discuss the 
challenges related to the dependency on these fertilizers 
for food production in Africa, but it should be noted that 
some of these challenges are global.

The eutrophication of surface water bodies in SSA has 
largely been associated with chemical nutrient leaching 
and runoffs from agricultural fields [18]. These chemi-
cals may also destabilize natural ecosystems and affect 
the microflora in plant rhizospheres which are extremely 
important for soil health and fertility [68]. Chemical ferti-
lizers also lead to environmental pollution [69], and their 
long-term application may also have negative impacts on 
human health [13] since they can contain heavy metals, 
inorganic acids, and other pollutants that build up in soils 
and contaminate agricultural food products [70].

Perhaps the biggest challenge is that fertilizer recom-
mendations in Africa are often generalized by region. 
Such ‘blanket’ recommendations do not always produce 
the desired effects since environmental and management 
factors differ even over short distances [71]. Further-
more, the fertilizers are generally composed of the major 
plant-limiting nutrients without consideration of the 
specific requirements and appropriate products for Afri-
can soils [44, 45]. Most crops also exhibit low fertilizer 
use efficiency or respond differently to fertilizer applica-
tions in different areas [44]. According to Le Mire et al. 
[72], only about 10–40% of all applied N in crop fields is 
effectively used by plants, while approximately 60–90% 
escapes into the environment from the agricultural fields 
by nitrate leaching or NH3 volatilization. Similarly, only 
about 5–25% of applied P is taken up by plants while the 
remaining 75–95% persists in soil in insoluble forms [73]. 
Zinc fertilizers also dissolve very slowly in soils at rates 
that cannot adequately supply sufficient Zn as required 
by plants [74].

Synthetic fertilizers contribute to climate change and 
global warming through the emission of greenhouse 
gases (GHG) like nitrous oxide (N2O) from N fertilizers 
[75]. This continues to raise concerns worldwide espe-
cially since the global warming effect per unit weight of 
N2O is 300 times that of CO2 [76]. According to Camp-
bell et  al. [77], N fertilizers alone are responsible for 

more than 30% of agricultural-related N2O emissions. 
Moreover, the carbon footprint of N fertilizers is higher 
than those of P and K by at least one order of magnitude 
[78]. The production of synthetic N fertilizers also relies 
heavily on fossil fuels to generate the high temperatures 
needed to catalyze the artificial dinitrogen (N2)-fixation 
process [79]. This results in the depletion of natural 
resources and global warming [80].

The production of artificial fertilizers is energy-inten-
sive and extremely expensive for African countries [81]. 
For instance, the amount of energy required to produce 
1 kg of N, P, and K fertilizers is 11.2, 1.1, and 1.0 kW h−1, 
respectively [82]. Although the demand for these fertiliz-
ers can be met by imports, the global fertilizer industry 
is largely dominated by international companies [83], and 
the cost of acquiring these fertilizers is often prohibi-
tive for many African farmers, especially due to trans-
portation overheads [44, 52, 81]. A very recent survey 
indicates that the cost of these fertilizers in the African 
market can be 2–6 times higher than in the United States 
of America due to transportation costs [18], importation 
duties, and storage costs alone [44]. In an analysis of the 
cost of acquiring urea fertilizers for maize production 
in East Africa and the corresponding prices of the pro-
duce by Guo et al. [84], the costs incurred for fertilizers 
were shown to increase with increasing market distances 
while the prices of maize and value-cost ratios decreased. 
Given that the consumption of these fertilizers exceeds 
their production in Africa, most countries rely on 
imports to supplement their demands [85], and the high 
costs involved are often prohibitive [86].

Perhaps the greatest problem associated with the usage 
of synthetic fertilizers is the looming depletion of natural 
resources required for their production. Research shows 
that the costs of synthetic P fertilizers will continue to 
rise due to the depletion or scarcity of rock phosphates 
that are used to produce them [66]. These resources are 
rapidly diminishing and are predicted to be completely 
exhausted by 2030 [87] or 2033 [88].

The potential roles of rhizobacteria as biofertilizers 
for soil fertility and crop productivity
Most important plant nutrients such as N, P, K, Zn, and 
Fe occur as bound organic molecules which are inac-
cessible to plants [89]. Several rhizobacteria can fix 
atmospheric N using the nitrogenase enzyme-mediated 
reduction of N2 into ammonia (NH3) [90], which is one of 
the N forms that can be assimilated by plants [91]. Such 
rhizobacteria can be exploited as alternative N bioferti-
lizers for crops [92]. Rhizobium and Bradyrhizobium are 
the most popular N2-fixing rhizobacteria [93], and their 
potential for increasing the yield of legumes has also 
been demonstrated in Africa [30, 94]. Reports show that 
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Rhizobium biofertilizers alone can supplement about 50% 
of the fertilizers needed by crops in the arid and semiarid 
N-deficient croplands in Zimbabwe, Tanzania, and Kenya 
[95]. Similarly, about 48–300 kg N  ha−1 can be fixed by 
BNF in legume plots [95–97]. Relatively recent estimates 
suggest that the N2-fixing Azolla in African countries 
such as Nigeria, South Africa, Ivory Coast, Togo, Sen-
egal, and Kenya can be used to increase soil N content 
and yield of rice plantations [34]. Cognizant of this, the 
application of rhizobacteria has an enormous potential in 
Africa to sustainably maintain soil fertility.

Although N2-fixation potential is widely investigated 
among the symbiotic legume–Rhizobium interactions, 
reports show that nitrogenase genes occur in diverse 
bacterial taxa [98], and non-leguminous plants can also 
host N2-fixing bacterial strains [33, 99, 100]. This implies 
that other plant–microbe interactions can similarly be 
important.  The use of N2-fixing biofertilizers in Africa 
is quickly gathering momentum, especially for legume 
crops and subsequent crops in rotation [53], and is criti-
cal for improving soil fertility [101]. These alternative 
N fertilization mechanisms present a new front in crop 
production especially due to the high cost of N fertiliz-
ers and their apparent negative effects on the ecosystem 
[102]. However, information on African Rhizobia is still 
limited despite the potential they hold for improving leg-
ume production systems [103].

Apart from N2-fixation, some rhizobacteria can greatly 
improve plant nutrient uptake through nutrients solubi-
lization [89, 104]. Evidence suggests that P solubilization 
and mobilization which are mediated by most rhizobac-
teria are invaluable at increasing P availability in agricul-
tural soils [105, 106].

Phosphate-solubilizing bacteria (PSB) can mediate the 
solubilization of inorganic P like tricalcium phosphate 
and rock phosphate to monobasic (H2PO4

−) and dibasic 
(HPO4

2−) ions which are the only P forms that can be 
used by plants [107]. The solubilization of organic P by 
phosphatases and phytases by PSB is referred to as min-
eralization [104] and may constitute up to 5% of total P 
in soil [108]. Examples of some commonly studied PSB 
are Azotobacter, Bacillus, Beijerinckia, Burkholderia, 
Enterobacter, Erwinia, Flavobacterium, Microbacterium, 
Pseudomonas, Rhizobium, and Serratia [67]. These rhizo-
bacteria, therefore, present a great potential towards P 
nutrition for plants.

Potassium solubilizing biofertilizers (KSB) can solubi-
lize K from insoluble K-bearing minerals using organic 
ligands and enzymes [104]. The ability of KSB to effec-
tively solubilize K depends on soil types, microbial 
strains, and the form of K compounds [109]. Most KSB 
species belong to Pseudomonas, Burkholderia, Aci-
dothiobacillus, Bacillus, and Paenibacillus genera [110]. 

Different mechanisms implicated in K solubilization such 
as acidolysis, chelation, exchange reactions, and pro-
duction of organic acids [104] are extensively reviewed 
by Sarratt et  al. [7]. The application of such organisms 
can be useful for increasing K availability to plants and 
should be considered as an attractive strategy for eco-
friendly crop production [7].

The supply of micronutrients in agricultural soils is 
rapidly gaining recognition in African not only due to 
their important roles in crop productivity, but also the 
provision of essential micronutrients in food [3]. Zinc-
solubilizing biofertilizers (ZSB) have the potential to 
improve plant Zn utilization [111]. Such bacteria are 
documented to solubilize insoluble Zn sources such as 
Zn Oxide (ZnO), Zn carbonates (ZnCO3), and Zn phos-
phates [Zn(PO4)2] which are commonly present in soils 
but unavailable to plants [112]. Some rhizobacteria pro-
duce siderophores which have a high affinity for binding 
Fe and are useful in enhancing plant Fe nutrition [113]. 
Besides, siderophores can also be involved in the inhibi-
tion of plant pathogens and plant bio-protection through 
Fe starvation and competitive exclusion in Fe-limited 
soils [104]. Rhizobacterial biofertilizers with this capac-
ity can, therefore, enhance Fe acquisition by plants in Fe-
limiting soils by chelating Fe from available complexes 
[113].

Some beneficial rhizobacteria produce plant growth 
regulators that influence various plant physiological 
processes at very low concentrations [104]. These hor-
mones may also be indirectly involved in enhancing the 
tolerance of plants to abiotic environmental stresses [11]. 
The two most studied plant growth regulators are indole-
3-acetic acid (IAA) and gibberellic acid (GA) [94]. While 
IAA is important for root elongation, differentiation, and 
extension [114], GA is known to induce shoot elonga-
tion, flowering, stem elongation, and fruit setting [115]. 
Generally, rhizobacteria-mediated soil fertility and plant 
health improvement is a net result of multiple processes 
that may occur simultaneously and all aforementioned 
attributes make rhizobacteria important candidates for 
soil fertility and plant health [116]. The use of rhizobac-
terial biofertilizers could be the ultimate strategy for 
enhancing and maintaining soil fertility and agricultural 
sustainability [64].

The commercialization, utilization, and practical 
application of rhizobacterial biofertilizers in Africa
Although many reports exist on the formulation, com-
mercialization, and application of rhizobacteria all over 
the world, very few of these report on their commerciali-
zation and applications in African countries (Table 2).

A literature search revealed that in Africa, most rhizo-
bacterial biofertilizers are commercialized in South 
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Africa, with little or no evidence of their commercializa-
tion and/or usage in other African countries. Zimbabwe 
has also invested considerably in biofertilizer usage for 
soybean production [117]. Adesemoye and Egamberdi-
eva, [118] articulate some of the reported uses and pros-
pects of microbes and PGPR in the African region. These 
prospects are also reported for Kenya [29], South Africa 
[119], Nigeria [31], Egypt [120], and Ethiopia [121]. These 
studies evidence the capacity of rhizobacterial bio formu-
lations in African agriculture for crop productivity.

Advantages of rhizobacterial biofertilizers 
over conventional fertilizers
Rhizobacterial biofertilizers present numerous advan-
tages over their chemical counterparts from a global 
perspective. For instance, they offer environmentally 
friendly, low cost and efficient methods of increasing crop 
yields [129]. The use of biofertilizers by resource-poor 
farmers can increase crop yields and reduce the produc-
tion costs through reduced need for chemical inputs [14]. 
For Africa, reports show that the cost of rhizobacterial 
biofertilizers is far much lower than that of synthetic fer-
tilizers needed to deliver the same quantity of nutrients 
in soil.  For instance, the cost of NoduMax biofertilizer 
in Zimbabwe and other West African countries is only 
$5 ha−1 compared to about $100 cost ha−1 for urea ferti-
lizers [130]. In this regard, rhizobacterial biofertilizers are 
an economically viable technology for increasing sustain-
able crop production in Africa.

Apart from enhancing plant growth and yields by 
increasing soil fertility and nutrient availability, the use of 
rhizobacterial biofertilizers also reduces the environmen-
tal pollution caused by chemical fertilizers and protects 
plants against many soil-borne pathogens [131]. These 
bio-products can also alleviate abiotic stresses in plants 
[132]. Additionally, they are safer to apply and their activ-
ities are more specific and effective in small quantities 
and they can survive to the next cropping seasons, unlike 
their artificial counterparts. For instance, the continu-
ous use of these biofertilizers is advanced to enable the 
beneficial microbial populations to build up in soils, thus 
constantly maintaining soil fertility [133].

Unlike synthetic fertilizers where up to 50% of the 
applied fertilizers are lost by leaching and/or fixation in 
soil, biofertilizers are not prone to leaching and fixation 
in soil, and have over 90% efficiency [72]. Biofertilizers 
also undergo natural decomposition, hence, there is no 
risk of their persistence in the environment and to human 
health [134]. In this context, rhizobacterial biofertiliz-
ers offer a promising, sustainable, and environmentally 
friendly approach to soil fertility and plant health [134], 
not only for Africa but the entire world at large.

Constraints of formulation, commercialization, 
and practical application of rhizobacterial 
biofertilizers in Africa
Despite the benefits offered by biofertilizers as alter-
natives to synthetic fertilizers, their potential remains 
largely untapped in Africa [95, 135]. Here we identify 

Table 2  Examples of commercialized biofertilizers in some African countries

a South Africa
b The International Institute of Tropical Agriculture

Rhizobacteria Product name Company Country References

Rhizobium SeedQuestR Soygro Ltd S. Africaa [122]

Azospirillum brasilense Mazospirflo, Azo-N Soygro Ltd S. Africaa [123]

Bacillus sp. LifeForce, Biostart, 
Waterbac, FirstBase

Microbial solution Ltd S. Africaa [124, 125]

Bacillus sp., Enterobacter spp., Pseudomonas, Rhizobium Organo Microbial solution Ltd S. Africaa [124]

B. subtilis B-RUS, Extrasol Ag-Chem Africa Ltd S. Africaa [124]

Bradyrhizobium elkanii Likuiq Semia Microbial Solution Ltd S. Africaa [17, 125]

B. japonicum Histick BASF South Africa Ltd S. Africaa [17]

Azospirillum spp. Azo-N BioControl Products S. Africaa [125]

Bacillus sp., Pseudomonas sp., Rhizobium, Azotobacter Organico Amka Products S. Africaa [125]

Bradyrhizobium Nodumax IITAb Nigeria [17]

Bacillus subtilis Bac up BioControl Product SA S. Africaa [105]

Bradyrhizobium japonicum Soyflo, Vault N Soy Soygro Ltd S. Africaa [17]

Azotobacter sp., Lactobacillus sp., Pseudomonas fluorescens Soil Vital Q BioControl Products SA S. Africaa [126]

Bravibacillus, Paenibacillus, Sporolactobacillus SoilFix BioControl Products SA S. Africaa [127]

Not revealed Biofix MEA Fertilizer Ltd Kenya [128]
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some of the reasons why their formulation, commerciali-
zation, and utilization in Africa are not developing as fast 
as in other parts of the world. Some of these constraints 
may, however, be global. Even though a large number of 
biofertilizers are known and patented for PGP in Africa, 
these are still not commercially available for utilization 
due to several reasons. Inadequacy of effective regula-
tions in the region is recognized as the main hindrance 
to their adoption, thus many of these products have not 
been registered because of lengthy procedures and the 
high costs involved [136]. The regulation of formulated 
products and the formalities involved in the registration 
process by environmental protection agencies are often 
very stringent and the costs involved are also prohibitive. 
This is often unaffordable to industrialists trying to ven-
ture into their commercialization, thus, laboratory devel-
opments do not always end up as practical applications.

The commercialization of PGPR formulations to boost 
crop productivity is also greatly limited by the variabil-
ity and inconsistency of laboratory, greenhouse, and field 
results [73, 137]. Soil is an unpredictable environment 
and the intended results are not often accomplished. Cli-
matic variations also have a large impact on the effective-
ness of PGPR [138]. Consequently, rhizobacteria which 
function optimally in laboratories may not produce simi-
lar results as field formulations [139]. This calls for inno-
vative solutions.

Considering the distribution of inoculants to remote 
farms in less developed countries, it is obvious that inoc-
ulants cannot always be stored under ideal conditions but 
may be exposed to high temperatures, humidity, or light 
[140]. To increase acceptance by farmers, formulations 
should also be compatible with their conventional prac-
tices, be applicable with standard machinery, not associ-
ated with additional work steps, and be compatible with 
traditional techniques such as seed treatments [141]. The 
commercialization of non-sporulating bacterial inocu-
lants is even more challenging due to their susceptibility 
to loss of viability during production, storage, and han-
dling. This implies that sensitive bacterial strains, albeit 
displaying strong plant-beneficial aspects, hardly find 
their way into the market. Herein lies the challenge for 
formulation development and the prospect of utilizing 
highly potent bacterial strains.

Farmers are not always keen on alternative crop fertili-
zation technologies in most developing countries [142]. 
The main reason for this skepticism relates to their vari-
able efficacy in the field compared to conventional syn-
thetic fertilizers [143]. Additionally, inoculants must 
overcome the loss of viability during storage and pos-
sess long shelf lives. Farmers are seeking products with 
repeated positive results, ease of handling, and reason-
able prices. In this regard, the disadvantages associated 

with rhizobacterial biofertilizers such as low shelf life, 
temperature-sensitive storage conditions, and bulkiness 
are the main reasons why the biofertilizer technology is 
not yet satisfactory and popular as alternative means of 
soil fertilization [144]. Some biofertilizers may require 
storage by refrigeration which is not ideal in Africa where 
temperatures are often high and power is costly [136]. 
Furthermore, there is low demand for this technology 
due to the lack of awareness and understanding [145].

Other challenges relate to the lack of proper distinction 
between potential biofertilizer agents and opportunistic 
human pathogens. There still is lack of clarity in distin-
guishing between biofertilizers and related opportunistic 
pathogens which promotes the lack of acceptance and 
challenges in convincing policymakers, environmental 
protection bodies, and other stakeholders about technol-
ogy transfer and adoption [146].

Prospects and future perspectives
Although there are great prospects for rhizobacterial 
biofertilizers for sustainable crop production and food 
security in Africa, the use of these products in the con-
tinent is still limited and grossly inadequate. Their pro-
duction, distribution, and consumption require a lot of 
emphasis. Since their commercialization and utiliza-
tion are greatly dependent on shelf life, there is need to 
improve this aspect during formulation [137]. The suc-
cessful application of rhizobacterial biofertilizers in Afri-
can agriculture will similarly require market stimulation 
through investments and strategies that can promote 
their understanding, access, and use [143]. Along with 
this, well-defined regulations and quality standards will 
also facilitate their registration [147].

Research to improve the agricultural application of 
biofertilizers is still in infancy in most SSA countries 
[148], and is largely derailed by the absence of support-
ive regulatory and policy frameworks [135, 149]. Proper 
regulation and quality control of biofertilizers can ensure 
their conformity to prescribed standards, product safety, 
and efficacy [150]. In the same context, effective quality 
control and regulations can ensure that rhizobacterial 
biofertilizers compete favorably with proven technologies 
to promote fair trade and market expansion [151].

Nitrogen fixation is widely studied for legume appli-
cation in Africa. However, the focus should now shift 
to N2-fixation in non-leguminous plants which are also 
important for food security [136]. Similarly, the biodi-
versity of N2-fixing rhizobacteria other than Rhizobia 
should be investigated for applicability [99]. The efficacy 
of rhizobacterial fertilizers is known to vary widely from 
one geographical location to another [152], and with-
out extensive research, it will be impossible to develop 
formulations that can cater for the spatial and temporal 
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differences across the African continent [153]. The con-
sistency of biofertilizers can greatly be enhanced through 
the development of compatible cocktails or consortia of 
beneficial microbes for increased performance. Other 
approaches that can enhance the performance of rhizo-
bacterial biofertilizers include genetic engineering of 
effective PGPR strains or the isolation and formulation 
of multi-trait PGPR strains. Through genetic engineer-
ing, the development and introduction of single bacteria 
with multiple PGP traits into plant rhizospheres can be 
achieved for increased performance.

Increased awareness of biofertilizers should be tar-
geted through information dissemination to facilitate 
acceptance by African farmers [149]. Demonstrations 
and field trials can similarly enhance their acceptance as 
has been evidenced in Vietnam, for instance [154]. There 
is increasing evidence that biofertilizers can enhance 
plants’ tolerance to abiotic environmental stresses [12] 
which is extremely important especially in the wake of 
climate change and prolonged droughts. However, many 
challenges remain to be overcome before they can fully 
and widely be accepted in Africa [72]. The integration 
of biofertilizers into agricultural practices is pegged on 
their economic and functional relevance relative to the 
conventional and contemporary practices [142]. In this 
regard, further research is needed to comprehend the 
environmental parameters that affect their efficacy and 
the selection of multi-trait PGP strains. It is also essential 
that the formulation of biofertilizers employs cheap raw 
materials like agricultural or industrial wastes to keep the 
costs of production low.

With intensive efforts in research and awareness 
creation, the credibility, acceptance, and utilization of 
rhizobacterial fertilizers will eventually increase [155]. 
Globally, the biofertilizer market is predicted to continue 
expanding due to the growing concerns over GHG emis-
sions, increasing awareness, calls for sustainable agri-
culture, and rising consumer demands for organically 
produced foods [156]. With this, their formulation, com-
mercialization, distribution, and utilization in Africa may 
similarly increase. Ultimately, the much-needed agri-
cultural revolution may be witnessed both in Africa and 
globally through biofertilizers.

Conclusions
The intensification of agricultural activities is increas-
ing more than ever, and with even greater impacts on 
the environment. Africa and the rest of the world are 
faced with a double challenge of producing more food 
to ensure food security but without further environ-
mental degradation. Rhizobacterial biofertilizers possess 
multifarious PGP functions that can be exploited and 
harnessed for eco-friendly and sustainable agricultural 

systems worldwide. However, the use of these promising 
technology is still grossly inadequate in Africa, and a lot 
of emphasis is required on their production, promotion, 
commercialization, consumption, and distribution. As 
Africa’s population continues to expand, and more and 
more food must be produced to meet the equally rising 
food demand, and these biofertilizers can be the critical 
link to sustainable agriculture and Africa’s food security.
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