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Abstract 

Background:  Climate change in Sub-Saharan Africa has had a negative impact on agricultural production leading 
to food insecurity. Climate-smart agricultural (CSA) practices have the potential to reverse this trend because of its 
triple potential benefits of improved productivity and high income, reduction or removal of greenhouse gases and 
improved household food security. Hence, we empirically find the determinants of choice and the effect of CSAs on 
household food security among smallholder farmers in Kenya.

Methods:  Primary data were collected in Teso North Sub-county, Busia County of Kenya, among smallholder farmers. 
CSA practices used by farmers were grouped by principal component analysis and linked to food security by multino-
mial endogenous switching regression model.

Results:  With the application of principal component analysis, we clustered the CSA practices into 4 components: 
crop management, field management, farm risk reduction and soil management practices. We find that the greatest 
effect of CSA adoption by smallholder farmers on food security is when they use a larger package that contains all the 
four categories of practices. Adopters of this package were 56.83% more food secure in terms of HFCS and 25.44% 
in terms of HDDS. This package mitigates upon the impacts of climate change as well as enhancing nutrient avail-
ability in the soils for higher productivity. Further, adoption of this package was positively influenced by gender of the 
household head, farm size and value of productive farm assets.

Conclusions:  CSAs have the potential to alleviate food insecurity among smallholder farmers if used in combinations 
and to a larger extend. To enhance adoption, land fragmentation should be discouraged through civic education and 
provision of alternative income-generating activities for farmers to benefit when practiced on relatively bigger land. 
Farmers should be sensitized on the need to invest in farm productive assets in order to absorb the risks of climate 
change while enhancing adoption of CSA practices.

Keywords:  Climate-smart agricultural practices, Food security, Climate change, Smallholder farmers, Multinomial 
endogenous switching regression analysis
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Introduction
Climate change is a threat to food security systems and 
one of the biggest challenges in the twenty-first century 
[1]. The ability to contain the pace of climate change by 
keeping temperature rise within 2  °C threshold is now 
curtailed, and the global population will have to deal with 
its consequences [2]. This is in the context that agricul-
tural production systems are expected to produce food 
for the global population that is projected to be 9.1 bil-
lion people by 2050 and above 10 billion by the year 2100 
[3]. According to [4], agricultural systems should be 
transformed to increase the productive capacity and sta-
bility in the wake of climate change. Climate change has 
already caused significant impacts on water resources, 
human health and food security [1]. The steady rise in 
temperature and irregular rainfall patterns affect agricul-
tural production with the attendant decline in crop and 
livestock production.

In Sub-Saharan Africa (SSA), poverty reduction and 
food security improvement are among the many chal-
lenges that governments face. These governments con-
stantly face a trade-off between food production which 
generates significant amounts of green house gas (GHG) 
and mitigation of climate change which requires reduc-
tion in some agricultural activities [3]. For instance, 
ruminant production contributes a significant amount 
of methane gas to the atmosphere, yet it is an important 
exercise to meet the food demand and income for farm-
ers [1]. Addressing these antagonistic objectives has 
proved challenging. Attention in the literature has mostly 
focused on the low and stagnant returns from African 
agriculture [3, 5]. Moreover, many ecosystem services, 
including nutrient cycling, nitrogen fixation, soil regener-
ation and biological control of pests and weeds, are under 
threat in African food production systems and have seri-
ous implications on smallholder sustainable food security 
[6–8]. SSA continues to significantly face declining fallow 
periods, with inadequate investment in sustainable inten-
sification and veering off from diversification in favour of 
mono-cropping in otherwise traditionally complex farm-
ing systems [6]. The result of this trend is food insecurity 
brought by the low agricultural production, especially 
under the conditions of climate change.

Climate change in Kenya is quite evident indicated by 
a continuous rise in temperature [9]. Generally, irregu-
lar rainfall patterns continue to be experienced with 
intense downpours causing floods in many parts which 
appear in cycles with severe droughts. Specifically, both 
day and night temperatures have significantly been on 
a rising trend since the 1960s. For instance, the night 
temperature (minimum) has risen by 0.7–2.0 °C and the 
day temperature (maximum) by 0.2–1.3  °C, depend-
ing on the season and the region [10, 11]. Further, these 

unprecedented changes in climate have accompanied 
losses that have already been experienced in the country 
[10]. For instance, evidence indicates that between 1999 
and 2000 droughts in Kenya caused damages equivalent 
to 2.4% of gross domestic product (GDP) [9]. The report 
further indicates that the projected annual cost of climate 
change impacts will be in the tune of USD 1–3 billion by 
the year 2030 [9].

Majority of smallholder farmers in Kenya depend on 
agriculture for survival [12]. Building their adaptive 
capacity and resilience to climate change is key to enable 
them protect their livelihoods and ensuring their food 
security. The ability to cope with the impacts of weather 
shocks and natural disasters brought by the effects of 
climate change depends largely on the household’s resil-
ience, or its capacity to absorb the impact of, and recover 
from, a shock [13]. One way of combatting the effects 
of climate change is through climate-smart agricultural 
(CSA) practices [1, 11, 14, 15]. Promoters of CSA adop-
tion seek to sustainably increase agricultural productivity 
and incomes by building resilience through adapting to 
changes in climate and reducing and/or removing GHGs 
emissions relative to conventional practices [1]. Strength-
ening Adaptation and Resilience to Climate Change in 
Kenya Plus (StARCK+) Programme identifies poverty, 
weak institutions and under-investment in key sectors as 
the main factors which stifle Kenya’s ability to cope with 
climate change.

Climate change is a serious threat to local food produc-
tion and family well-being resulting in malnutrition, hun-
ger and persistent poverty in many regions of Kenya [16]. 
Despite the multiple benefits of CSAs and the deliberate 
efforts by the government and development partners to 
encourage farmers to invest in them, there is still a lack 
of evidence on farmers’ incentives, conditioning factors 
that hinder or accelerate usage and impact of CSAs on 
food security status. Thus, an improved understanding 
of farmers’ adoption behaviour and the potential welfare 
effects in terms of food security is important in informing 
the strategies policy makers and other development part-
ners could champion in enhancing usage and effective-
ness of CSA practices in smallholder production systems.

Based on the foregoing, the objectives of this study 
are twofold. We first seek to determine the factors that 
influence the choice of CSA practices in smallholder pro-
duction systems. Secondly, we explore the effect of the 
CSA practices on household food security. To achieve 
these objectives, we use a micro-level data set of small-
holder farmers in Kenya. This paper contributes to the 
literature as follows. First, we group the CSA practices 
based on usage by farmers in a principal component 
analysis (PCA). This departs from use of the conventional 
groups used by earlier researchers [8, 17, 18] which could 
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potentially present difficulties, especially where few or 
even one strategy represents the entire group leading to a 
weak attribution of the impacts of such groups. Secondly, 
we also evaluate the influence of farmer perception on 
soil conditions and past experiences with climate-related 
shocks on adoption of climate-smart agricultural prac-
tices. Lastly, we link smallholder farmer’s usage of CSA 
practices with household food security status to pro-
vide micro-level evidence. A multinomial endogenous 
switching treatment effects approach is used to control 
for selection bias while determining the impact of CSAs 
on food security. This is demonstrated using data from a 
cross-sectional survey of rural smallholders who partici-
pate in agricultural production amidst the challenges of 
climate change.

Methodology
Study area
This study was conducted in Teso North Sub-county, 
Busia County in Kenya. The area was selected for study 
because of its high potential for food production in the 
entire Busia County which is attributed to its better soils 
but under threat of massive soil degradation. It lies on the 
Northern part of Busia County and has six wards (Malaba 
Central, Malaba South, Malaba North, Ang’urai South, 
Ang’urai North, and Ang’urai East) and covers an area 
of 261 km2 with a population of 117,947 [16]. The Sub-
county has two main rivers Malakisi and Malaba on the 
northern part. The dry season with scattered rains falls 
from December to February. The Sub-county receives an 
annual rainfall of between 760  mm and 2000  mm. [16] 
indicates that 50% of the rainfall falls during the long 
rain season which is at its peak between late March and 
late May, while 25% falls during the short rains between 
August and October. The annual mean maximum and 
minimum temperatures range between 26 and 30 and 14 
and 22 °C, respectively.

The Sub-county has experienced environmental deg-
radation including loss of quality and quantity of natu-
ral biodiversity, soil erosion and flooding which poses a 
threat to its food production potential. As stated in the 
county’s integrated development plan, varying rainfall 
patterns have affected both land preparation and good 
production leading to lower yields [16]. There is also 
a remarkable decline in water volumes in rivers, wells, 
pans, and springs with the average distance to watering 
point averaging at 1.5 km.

The data used for this study were obtained from a farm 
household survey carried out between May and July 2016 
by well-trained enumerators. The sample for this study 
was drawn from smallholder farmers in Teso North Sub-
county. Multistage sampling procedure was employed 
to select respondents, whereby in stage one, Teso North 

Sub-county was purposively selected based on its high 
food production potential in the entire Busia County. 
In stage two, three wards (Malaba South, Malaba North 
and Ang’urai South) were randomly selected from the six 
wards in Teso North Sub-county. Finally, in the last stage, 
simple random sampling was used to select 384 farmers 
for the interview from a source list acquired from the 
office of County Director of Agriculture using a pretested 
interview schedule. The interview schedule was admin-
istered through face-to-face interviews by well-trained 
enumerators.

Analytical framework
First, CSA practices used in Teso North were identified 
and grouped into heterogeneous principal clusters by 
the use of principal component analysis. The compo-
nents were rotated using orthogonal rotation (varimax 
method) [19, 20] so that smaller number of highly cor-
related practices would be put under each component for 
easy interpretation and generalization about a group. The 
result of the rotation was 4 principal components from 
a possible 14 extracted with eigenvalues > 1 following the 
[21] criterion. Principal component analysis was useful in 
reducing the dimensionality of data without loss of much 
information. This was important as it allowed determi-
nation of the relationship between practices based on 
usage and subsequent analysis by fitting the groups into 
the model and reaching conclusions. The approach is 
superior to the use of conventional grouping of practices 
which would make it difficult to conclude about a group 
in cases where few practices could represent the entire 
group.

The practices were grouped using principal component 
analysis with iteration and varimax rotation in the model 
represented as shown below:

where Y1,…Yj = principal components which are uncor-
related, a1 −  an =  correlation coefficient, X1,…Xj = fac-
tors influencing choice of a particular strategy. The CSA 
practices identified and grouped through a principal 
component analysis are presented in Table 1. Selection of 
these practices prior to the field study was guided by the 
successful CSA practices established by a previous study 
done by Forum for Agricultural Research in Africa in the 
region [7].

After grouping the CSA practices, multinomial endog-
enous switching regression (MNLESR) model was then 
used to model the determinants of choice and effect of 
CSA practices on food security of smallholder farmers. 

(1)
Y1 = a11x12 + a12x2 + · · · + a1nxn
· ·

Yj = aj1xj1 + aj2x2 + · · · + ajnxn
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Food security status of the respondents was measured 
using Household Food Consumption Score (HFCS) and 
Household Dietary Diversity Scores which are measures 
of dietary diversity and quality.

In the first stage, farm households were assumed to 
face a choice of 7 mutually exclusive combinations/pack-
ages for responses to changes in mean temperature and 
rainfall (climate change). In the second stage, MNLESR 
econometric model was used to investigate the effect of 
different CSA practices on food security status.

Stage 1: Multinomial adoption selection model
At this stage, multinomial logit was used to determine 
the determinants of choice of CSA packages. Farmers 
were assumed to maximize their food security status, 
Yi by comparing the revenue provided by 7(M) alterna-
tive CSA strategies. The requirement for farmer i to 
choose any strategy, j over other alternatives M is that 
Yij > YiM M �= j , that is, j provides higher expected 
food security than any other strategy. Y ∗

ij  is a latent varia-
ble that represents the expected food security level which 
is influenced by the observed household, plot character-
istics, climate shocks and unobserved features expressed 
as follows:

Xi captures the observed exogenous variables (household 
and plot characteristics), while the error term ɛij cap-
tures unobserved characteristics. The covariate vector 
Xi is assumed to be uncorrelated with the idiosyncratic 
unobserved stochastic component ɛij, that is, E(ɛij|Xi) = 0, 
whereby error terms ɛij are assumed to be identically 
Gumbel distributed and independent, that is, under the 

(2)Y ∗
ij = Xiβj + εij .

independent irrelevant alternatives (IIA) hypothesis. The 
selection model (2) leads to a multinomial logit model 
[22] where the probability of choosing strategy j(pij) is:

Stage 2: Multinomial endogenous switching regression 
model
Here, endogenous switching regression (ESR) was used to 
investigate the impact of each response packages on food 
security by applying [23] selection bias correction model. 
Farm households face a total of 7 regimes with regime j = 1 
being the reference category (non-responsive). The food 
security status equation for each possible regime is defined 
as:

From the above equation, Qij’s represent the food secu-
rity status, Zi represents a set of exogenous variables 
(that is, household, plot, location characteristics, insti-
tutional variables and climate shocks), and the ith farmer 
in regime j and the error terms μij’s are distributed with 
E(μij|x,  z) = 0 and var(µij|x, z ) = σ 2

j  . Qij is observed if, 
and only if, CSA strategy j is used, which occurs when 
Y ∗
ij >

max
M �=1 (Yim) ; if the error terms in (3) and (4) are not 

independent, OLS estimates for Eq.  (4) were biased. A 
consistent estimation of αj requires inclusion of the selec-
tion correction terms of the alternative choices in Eq. (3). 
MNLESR assumes the following linearity assumption: 
E(µij|εi1 . . . εij) = σj

∑j
m�=j rj(εim − E(εim)). By construc-

tion, the correlation between the error terms in (3) and (4) 
was zero.

Using the above assumption, Eq. (3) can be expressed as 
follows:

σj is the covariance between ε ’s and µ’s, while �j is the 
inverse Mills ratio computed from the estimated prob-
abilities in Eq. (5) as follows:

(3)pij = p(εij < 0|Xi ) =
exp(Xiβj)

∑j
M=1 exp(XiβM)

.

(4)

Regime 1 Qi1 = ziα1 + µi1 if i = 1
...

...
Regime j Qij = ziαj + µij if i = j

.

(5)

Regime 1 Qi1 = ziα1 + σ1�1 + ωi1 if i = 1
...

...
Regime j Qij = ziαj + σj�j + ωij if i = j

.

(6)�j =

j
∑

m�=j

ρj

[

pimIn(pim)

1− pim
+ In(pij)

]

.

Table 1  Climate-smart agricultural practices identified 
to be actively used by farmers

S. No. CSA practices

1 Use of improved crop varieties

2 Use of legumes in crop rotation

3 Use of cover crops

4 Changing planting dates

5 Efficient use of inorganic fertilizers

6 Use of terraces

7 Planting trees on crop land

8 Use of live barriers

9 Diversified crop and animal breeds

10 Irrigation

11 Use of improved livestock breeds

12 Use of organic fertilizers

13 Planting crops on tree land

14 Use of mulching
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ρ in the above equation represents the correlation coef-
ficient of ɛ’s and μ’s, while ωij are error terms with an 
expected value of zero. In the multinomial choice setting 
expressed earlier, there were j −  1 selection correction 
terms, one for each alternative CSA practice. The stand-
ard errors in Eq. (5) were bootstrapped to account for the 
heteroskedasticity arising from the generated regressors 
given by λj.

Estimation of average treatment effects
At this point, a counterfactual analysis was performed 
to examine average treatment effects (ATT) by compar-
ing the expected outcomes of adopters with and without 
adoption of a particular CSA strategy. ATT in the actual 
and counterfactual scenarios were determined as follows 
[8, 17]:

Food security status with adoption/usage

Food security status without adoption (counterfactual)

(7a)E(Qi2|i = 2 ) = ziα2 + σ2�2

(7b)E(Qij

∣

∣i = j ) = ziαj + σj�j .

(8a)E(Qi1|i = 2 ) = ziα1 + σ1�2

(8b)E(Qi1

∣

∣i = j ) = ziα1 + σ1�j .

ATT can be defined as the difference between (7a) and 
(8a) which is given by:

The right-hand side indicates the expected change in 
adopters’ mean food security status, if adopters’ char-
acteristics had the same return as non-adopters, for 
instance, if adopters had the same characteristics as non-
adopters, while λj is the selection term that captured all 
potential effects of difference in unobserved variables.

Variables used in econometric analysis are presented in 
Table 2 and were derived from review of past studies [7, 
8: 14, 24: 17].

Measurement of food security
To measure food security status of the farm households, 
Household Food Consumption Score (HFCS) and House-
hold Dietary Diversity Scores were used as proxies for 
food security of farmers. These tools were developed 
by WFP and are commonly used as proxies for access 
to food [25]. HFCS is a weighted score based on dietary 
diversity, food frequency and the nutritional importance 
of food groups consumed. The HFCS of a household is 
calculated by multiplying the frequency of foods con-
sumed within 7  days with the weighting of each food 
group. The weighting of food groups was determined by 
WFP according to the nutrition density of the food group 

(9)
ATT = E(Qi2|i = 2 )− E(Qi1|i = 2 )

= zi(α2α1)+ �2(ρ2 − ρ1).

Table 2  Variables used in econometric analysis

Variable Description Measurement Mean SD

FOODSEC Food security status of the household Food consumption score 63.22 19.24

Household Dietary Diversity Score 6.73 1.65

AGE Age in years of the household head Continuous 46.51 14.69

GENDER Gender of the household head Dummy = 1 if male 0 = female 0.77 –

EDUC Years of education of the household head Discrete 10.00 4.45

H/SIZE # of household size Discrete 6.87 2.61

OFF-FARM Participation in off-farm employment Dummy = 1 if yes 0 = otherwise 0.44 –

ASSETS Value of productive farm assets Continuous 62,965.81 63,951.31

LAND Owned farm size in acres Continuous 2.54 1.57

TERRAIN Terrain of the land 1 = sloppy 0 = otherwise 0.52 –

S/FERTILITY Level of soil fertility 1 = poor 2 = medium 3 = fertile 1.70 –

EROSION Severity of soil erosion 1 = severe 2 = moderate 3 = low 2.06 –

FLOOD If household experienced floods in the last 5 years Dummy = 1 yes 0 = otherwise 0.39 –

RAINS If the household experienced insufficient rains in the last 5 years Dummy = 1 yes 0 = otherwise 0.71 –

H/STRMS If the farm household experienced hailstorms in the last 5 years Dummy = 1 yes 0 = otherwise 0.63 –

DISTNCE Walking time in minutes to the input and output market Continuous 52.36 37.45

EXTN Number of annual contacts with extension agents Discrete 5.50 3.70

GRPMSHIP If the household head is a member of a farmer-related group or association Dummy = 1 if a member
0 = otherwise

0.66 –

CREDIT Whether household received credit Dummy = 1 if yes 0 = otherwise 0.60 –
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[26, 27]. Appendix  1 presents the various food compo-
nents used to determine the HFCS. HDDS is similar to 
HFCS with slight differences in the components of the 
various food clusters. While HFCS takes into account 
food items consumed within 7  days, the HDDS takes 
into account food items consumed within the last 24 h. 
Appendix  2 shows food group and weights for deter-
mination of HDDS. The two indicators measure food 
diversity which is strongly correlated with dietary qual-
ity and adequacy [28]. While recording the food items, 
foods taken during ceremonies and major occasions were 
skipped to reduce the bias that would have arisen in cap-
turing such meals. Thus, for both the indicators such days 
were dropped.

Results and discussion
Principal component analysis (PCA)
Table  3 contains principal components (PCs) and the 
coefficients of linear combinations called loadings. A 
visual inspection of Table  3 reveals that the four PCs 
explained 74.19% of total variability in the data set. The 
results presented in Table  3 present a good fit, indicat-
ing that the PCA results highly explained the data. The 
first component explained 35.65% variance and is corre-
lated with changing crop varieties, use of legumes in crop 
rotation, use of cover crops, changing planting dates and 
efficient use of inorganic fertilizer all with positive effects 
(factor loadings). Thus, this component was named crop 
management practices.

Principal components 2, 3 and 4 accounted for 20.12, 
11.08 and 7.35% variances, respectively. This means 
that the first four components have more importance in 
explaining the variance in data set. The second PC was 
associated with use of organic manure, planting of food 
crops on tree land (as part of agroforestry) and use of 
mulching all with positive loadings too. The third PC 
contained crops and livestock diversification and use 
of improved livestock breeds both with highly negative 
loadings and use of irrigation with positive loadings. 
Finally, the last PC was associated with use of planting 
trees on crop land and use of live barriers with high posi-
tive effects (loadings) and use of terraces with a high neg-
ative effect.

The communality column shows the total amount of 
variance of each variable retained in the four compo-
nents. MacCallum et al. [29] noted that all items in PCs 
should have communalities of over 0.60 or an average 
communality of 0.7 for small sample sizes precisely below 
50 to justify performing a PCA analysis. With the sample 
size of 384, the communalities presented in Table 3 meet 
the minimum criteria as they contribute more than 60% 
variance in the PCs. For the interpretation of the PCs, 
variables with high factor loadings and high communali-
ties were considered from the varimax rotation [19, 30].

Table  4 presents the descriptive statistics of composi-
tion of each component (climate-smart strategies). The 
most commonly used component was of crop manage-
ment practices with 96.09% of farmers using at least a 
unit of this component. This component comprised of 
practices such as: use of improved crop varieties, use of 

Table 3  Loadings of the four components for CSA compositions

Strategies Comp1 Comp2 Comp3 Comp4 Communality

Changing crop varieties 0.5467 − 0.3965 0.2579 − 0.2853 0.6040

Use of legumes in crop rotation 0.6491 − 0.3903 0.2574 − 0.2224 0.6894

Use of cover crops 0.6257 − 0.3138 − 0.2292 − 0.1559 0.6344

Changing planting dates 0.5223 − 0.3779 0.3280 − 0.2981 0.6121

Crop and livestock diversification 0.3910 0.3482 − 0.4904 0.3216 0.6180

Use of organic manure 0.2550 0.6522 − 0.3156 − 0.3036 0.5086

Efficient use of inorganic fertilizer 0.5537 0.2032 0.3940 − 0.3311 0.6127

Use of terraces 0.2485 0.3343 − 0.3243 − 0.6249 0.6691

Irrigation 0.3816 0.3986 0.4546 0.2423 0.6283

Trees on crop land 0.2459 − 0.3013 − 0.4518 0.6024 0.7183

Food crops on tree land 0.3202 0.6198 0.3715 0.3424 0.7419

Use of live barriers 0.3190 − 0.3308 − 0.3845 0.5146 0.6238

Mulching 0.2811 0.5512 0.3483 0.3819 0.6500

Use of improved livestock breeds 0.2510 0.3794 − 0.7011 − 0.1492 0.7207

Eigenvalues 4.9160 2.8161 1.5505 1.0287

Eigenvalues  % contribution 35.6543 20.1153 11.0751 7.3479

Cumulative  % 35.6543 55.7696 66.8447 74.1926
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legumes in crop rotation, use of cover crops, changing 
planting dates and efficient use of inorganic fertilizers. 
The second most used component was of general field 
management practices for soil erosion control used by 
81.51% of farmers. This component entailed of use of ter-
races and contour bunds, planting trees on cropland and 
use of live barriers.

Farm risk reduction measures were only used by 
39.84% of farmers. The practices in this component 
included: crop and livestock diversification, irrigation 
and use of improved livestock breeds. Finally, the least 
used component comprised of specific soil conservation 
practices which included: use of organic manure, plant-
ing crops on tree land and application of mulching. This 
component was used by 22.92% of farmers.

Econometric results
The determinants of choice of CSA packages are given 
followed by their impact on food security. CSA practices 
can be adopted in a wide range of different combinations, 
and this has implication on household’s food security sta-
tus. Given the set of available packages, understanding 
what drives an individual to select specific packages is 
important for policy direction.

Table  5 presents different packages (combinations), 
whereby 7 out of 16 possible combinations/packages 
were used by farmers. Few farmers (3.6%) were non-
users/non-adopters of any CSA package. About 2.6% of 
farmers used package C1F0R1S0. This package comprised 

of crop management practices and farm risk reduction 
measures only. Another 4.4% used package C1F0R1S1 that 
had crop management, farm risk reduction measures and 
soil management practices. Further, 7.0% of farmers used 
package C1F1R0S1 that contained crop management, field 
management and soil conservation practices. Another 
8.3% of farmers used package C1F0R0S0 that contained 
only crop management practices. Approximately 12% of 
farmers used package C1F1R1S1 with all the four groups 
of CSA strategies. About 21% used package C1F1R1S0 that 
contained crop management, general field management 
for soil erosion control and farm risk reduction practices 
only).

The largest share of farmers (41.1%) used a pack-
age C1F1R0S0 that had crop management and general 
field management for soil erosion control. This reveals 
the efforts of many subsistence farmers to achieve food 
production despite the challenges of land degradation 
caused by soil erosion. This observation is similar to the 
findings of [7] which suggested that farmers in the region 
executed such responsive strategies for survival amidst 
challenges of climate change. A keen look at Table  5 
reveals that all users of CSA practices (96.4% of all farm-
ers) used packages that included at least a crop manage-
ment practice. This observation demonstrates the need 
of most farmers to meet their basic crop production for 
food generation.

Determinants of choice of specific CSA packages
This section describes the factors that influence choice of 
CSA packages and then followed by quantification of the 
effect of using packages on food security status of farm-
ers in the last stage. This was achieved using the multi-
nomial endogenous switching regression (MNLESR) 
model which is a two-stage regression analysis model. 
The first stage of the MNLESR is the multinomial logit 
model which determines factors that influence the choice 
of CSA packages. This is an important stage as it guides 
on the necessary interventions to improve the adoption 
of CSA packages. In the second stage, the impact of usage 
of CSA packages on household food security was deter-
mined. The marginal effects from the MNL model that 
measured the expected change in the probability of a par-
ticular choice being made with respect to a unit change 
in an independent variable are reported in Table 6.

Non-use of all practices (C0F0R0S0) was the base cat-
egory compared to other seven packages (refer to Table 5 
for the packages) used by farmers. The results show seven 
sets of parameter estimates, one for each mutually exclu-
sive combination of strategies. The Wald test that all 
regression coefficients are jointly equal to zero is rejected 
[χ2 (119) = 445.52; p = 0.000]. Thus, the results show that 

Table 4  List of climate-smart strategies

Group Percentage 
of users

Components

Crop management 
practices (C)

96.09% Use of improved crop varieties

Use of legumes in crop rotation

Use of cover crops

Changing planting dates

Efficient use of inorganic fertilizers

General field man-
agement practices 
(F)

81.51% Use of terraces

Planting trees on crop land

Use of live barriers

Farm risk reduction 
practices (R)

39.84% Diversified crop and animal breeds

Irrigation

Use of improved livestock breeds

Soil conservation 
practices (S)

22.92% Use of organic fertilizers

Planting food crops on tree land

Use of mulching
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the estimated coefficients differ substantially across the 
alternative packages.

Age of the household head was negatively associ-
ated with usage of C1F0R0S0 and positively associated 
with usage of C1F1R0S1 at 10% and 5% significant levels, 
respectively. Increase in age of the household head by one 
year reduced the likelihood of using package C1F0R0S0 by 
0.19%, while increased the likelihood of using C1F1R0S1 
by 0.16%. This indicates that as age increases, farmers 
shift from smaller packages to larger ones. Older farm-
ers may be more experienced with regard to production 
technologies and may have accumulated more physical 
and social capital thus to afford larger and better pack-
ages. Contrary, [31] noted that old age had a negative 
relationship to adopting climate change adaptation strat-
egies, explaining that agriculture is a labour-intensive 
venture which requires healthy, risk-bearing and ener-
getic farmers. Again, older farmers may not be aware of 
recent innovations.

With regard to gender of the household head, male-
headed households were 2.7% more likely to use pack-
age C1F1R1S1 that contains crop management practices, 
field management, farm risk reduction practices only at 
5% significant level relative to C0F0R0S0 (non-use of any 
CSA practices) compared to females. Women generally 
face constraints in terms of accessing resources and time. 
This may explain the negative relationship with usage of 

CSA practices in this study. FARA [7] reported that gen-
der remains a significant barrier to the adoption of CSAs 
by women, stemming largely from customary gender 
roles. They further stated in the report that women have 
less access than men to resources such as land, inputs, 
credit, education and extension services, all of which may 
be important to support transitions to CSA. Land own-
ership systems also present more entrenched barriers to 
female-led households. Land tenure systems in Western 
Kenya, for example, require women who want to adopt 
CSA to obtain permission from male relatives, thus 
derailing them [32].

Years of education of the household head negatively 
influenced usage of C1F1R0S0 which contains crop and 
field management practices only. One more year of edu-
cation reduced the probability of using this package by 
2% at 5% significance level. It could be that educated 
farmers opted out of this package since it does not offer 
risk reduction measures which could safeguard their 
investment against prevailing risks of climate change. 
This category of farmers avoided taking the risk of using 
this package with increase in their years of education. 
Similarly, [33] argues that higher levels of education tend 
to build the innovativeness and ability to assess risks by 
farmers for proper farm adjustments.

There was a positive and significant relationship 
between the value of productive farm assets (a proxy of 

Table 5  Specification of CSA strategy combinations to form the packages

The binary quadruplicate represents the possible CSA packages. Each element in the quadruplicate is a binary variable for a CSA combination: crop management (C), 
general field management for soil erosion control, farm risk reduction (R) and soil management practices (S). Subscript 1 = adoption and 0 = otherwise

Choice (j) Binary 
quadruplicate

C = crop 
management

F = field 
management

R = risk 
reduction

S = specific soil 
management

Frequency Percentage

C0 C1 F0 F1 R0 R1 S0 S1

1 C0F0R0S0 ✓ ✓ ✓ ✓ 14.0 3.60

2 C0F0R0S1 ✓ ✓ ✓ ✓ 0.00 0.00

3 C0F0R1S1 ✓ ✓ ✓ ✓ 0.00 0.00

4 C0F1R1S1 ✓ ✓ ✓ ✓ 0.00 0.00

5 C1F1R1S1 ✓ ✓ ✓ ✓ 45.0 11.7

6 C1F1R1S0 ✓ ✓ ✓ ✓ 82.0 21.1

7 C1F1R0S0 ✓ ✓ ✓ ✓ 157 41.1

8 C1F0R0S0 ✓ ✓ ✓ ✓ 32.0 8.30

9 C0F1R0S1 ✓ ✓ ✓ ✓ 0.00 0.00

10 C1F0R1S0 ✓ ✓ ✓ ✓ 10.0 2.60

11 C1F0R0S1 ✓ ✓ ✓ ✓ 0.00 0.00

12 C0F1R0S0 ✓ ✓ ✓ ✓ 0.00 0.00

13 C0F1R1S0 ✓ ✓ ✓ ✓ 0.00 0.00

14 C0F0R1S0 ✓ ✓ ✓ ✓ 0.00 0.00

15 C1F0R1S1 ✓ ✓ ✓ ✓ 17.0 4.40

16 C1F1R0S1 ✓ ✓ ✓ ✓ 27.0 7.00

Total 384 100
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wealth) and usage of CSAs. Resource-endowed farm-
ers (those with greater value of productive farm assets) 
were more likely to use larger packages C1F1R1S0 and 
C1F1R1S1 as opposed to non-use of any package. Pre-
cisely, the probability of using these packages increased 
by 0.14% and 3.07%, respectively, for resource-endowed 
farmers. It is likely that wealthier farmers have the capac-
ity to use CSA practices, particularly expensive ones 
like use of improved livestock breeds and crop varieties 
available in these packages. Further, these assets enhance 
ability to absorb the risks associated with failure and the 
time it takes before realizing meaningful effects of using 
CSAs. This is consistent with [34] who noted that lack of 
productive assets limits the ability to adopt climate-smart 
practices that require huge resource allocation. Ochieng 
et  al. [35] as well notes that wealthier households have 
higher capacity to invest in such measures to improve 
crop production. However, on the other hand the prob-
ability of using C1F1R0S0 reduced by 7.2% with increase 
in farm assets perhaps due to lack of risk reduction meas-
ures in this package.

Farm size owned positively influenced the use of pack-
ages C1F0R1S1, C1F1R0S1, C1F1R1S0 and C1F1R1S1 and neg-
atively associated with the use of package C1F0R0S0. This 
implies that an increase in size of land by 1 acre (0.40 ha) 
increased the probability of using packages C1F0R1S1, 
C1F1R0S1, C1F1R1S0 and C1F1R1S1 by 2.7%, 1.1%, 1.1% and 
0.13%, respectively, while reduced the probability of using 
package C1F0R0S0 by 3.8%. It follows therefore that farm-
ers with larger farm size had the capacity to use larger 
packages as opposed to non-usage of any package. Avail-
ability of land provides opportunity for farmers to experi-
ment these important technologies, thus influencing 
usage of the large packages. This result is consistent with 
the result of [36] who stated that bigger farm size accrues 
benefits of economies of scale to farmers and also pro-
vide a means of diversifying production. Users of pack-
age C1F0R0S0 which contains crop management practices 
only were less likely to use the package with increase in 
their farm sizes. The possible explanation could be that 
these farmers chose to rent out their increasing farms for 
other users rather than farming since this small package 

Table 6  Marginal effects estimates for the determinants CSA packages by MNL

C0F0R0S0 is the reference base category in the MNL; HH is household head

***Significant at 1% level

**Significant at 5% level

*Significant at 10% level

Variables C1F0R0S0 C1F0R1S0 C1F0R1S1 C1F1R0S0 C1F1R0S1 C1F1R1S0 C1F1R1S1

dy/dx dy/dx dy/dx dy/dx dy/dx dy/dx dy/dx

Socio-economic factors

Age of HH − 0.0019* 0.0007 0.0015 − 0.0028 0.0016** 0.0016 0.0000

Gender of HH − 0.0434 0.0045 0.0340 − 0.0284 − 0.0047 − 0.0047 0.0271**

Years of education of HH 0.0013 0.0015 0.0033 − 0.0204** 0.0019 0.0019 0.0000

Household size 0.0075 − 0.0006 − 0.0020 − 0.0239 0.0056 0.0056 0.0004

Participation in off-farm employment − 0.0251 0.0022 0.0341 − 0.0518 − 0.0168 − 0.0168 0.0012

Natural log of farm assets 0.0032 0.0009 − 0.0045 − 0.0722*** 0.0014 0.0014*** 0.0307*

Farm size − 0.0378*** − 0.0104 − 0.0268** − 0.0171 0.0110* 0.0110*** 0.0013**

Farm characteristics

Perception on terrain of land − 0.0007 0.0057 − 0.0123 0.0995 − 0.0177 − 0.0177 0.0011

Perception Severity of soil erosion − 0.0107 − 0.0342** 0.0198 − 0.0452 − 0.0451** − 0.0451*** 0.0007

Perception of soil fertility − 0.0064 − 0.0002 0.0105 0.1871*** − 0.0128 − 0.0128*** 0.0007

Bad incidences

Frequent floods 0.0284 − 0.0266 − 0.0204 0.0205 0.0330* 0.0330 0.0003

Hailstorms 0.0268 0.0052* − 0.0053 − 0.0126 0.0193 0.0193 0.0006

Insufficient rains − 0.0023 0.0008 − 0.0169 0.0628 − 0.0311 − 0.0311 0.0004

Institutional factors

Walking time from farm to market 0.0002 − 0.0003 − 0.0005* 0.0011 − 0.0007** − 0.0007** 0.0001

Membership to a farmer group 0.0279 0.0148 − 0.0126 0.1888** 0.0221 0.0221** 0.0000

Contacts with extension agents − 0.0046 0.0021 0.0073 − 0.0296*** 0.0046 0.0046** 0.0002

Access to credit − 0.0461* − 0.0044 − 0.0083 − 0.1571** 0.0028 0.0028*** 0.0001

Number of observations = 375; Wald χ2 (119) = 445.52; p = 0.000
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may not offer meaningful production in the circum-
stances of harsh weather. Renting in farmers may not be 
motivated to implement long-term packages, thus reduc-
ing the usage of CSA practices on these particular farms.

The perception of severity of soil erosion by farmers 
was negatively associated with the use of the following 
packages: C1F0R1S0, C1F1R0S1 and C1F1R1S0. The prob-
ability of using these packages reduced by 3.4%, 4.5% and 
4.5%, respectively, for the farmers who regarded their 
plots as severely eroded. It appears that farmers were 
highly motivated to implement CSA practices on less 
severely eroded farms and vice versa. In essence, these 
farmers were not quite responsive to countering the 
effects of severe soil erosion but were rather discouraged 
by severe soil erosion in implementing CSA technologies. 
Contrary, [37] noted a positive relationship with adop-
tion of many soil conservation practices with the argu-
ment that farmers were responsive to soil degradation 
effects brought by soil erosion.

The perception of farmers towards soil fertility of 
the farm had a positive and significant influence on the 
usage of C1F1R0S0 and a negative influence on the usage 
of C1F1R1S0. The likelihood of using packages C1F1R0S0 
and C1F1R1S0 increased by 18.7% and reduced by 1.3%, 
respectively, for farmers who regarded their farms 
as being more fertile. This implies that farmers who 
regarded their farms as being more fertile were more 
likely to use a small package C1F1R0S0 as opposed to non-
use of any package. This is a lean package without sig-
nificant soil fertility replenishing avenues. But those who 
regarded their farms as being less fertile implemented a 
larger package C1F1R1S0 that contains more soil nutri-
ent enriching practices in the risk reduction component. 
Manda et al. [18] argues that the propensity to adopt sus-
tainable agricultural practices such as improved maize is 
expected to be greater on plots with fertile soils, because 
most improved maize varieties require the application of 
expensive inorganic fertilizers.

Factors related to past experiences with extreme 
weather conditions by farmers also influenced choice 
of CSA packages. For instance, farmers who experi-
enced frequent floods in the past were more likely to use 
package C1F1R0S1. The probability of using this pack-
age increased by 3.3% for the farmers who experienced 
frequent floods in the recent past. It is likely that these 
farmers were keener to the flood-related shocks, thus 
implementing a responsive strategy to curb it with proper 
field and soil management to abate soil degradation. 
Contrary, [24] noted that adoption of improved climate 
change adaptation technologies such as crop rotation 
and drought-resistant seeds is negatively and significantly 
influenced by harsh conditions brought by flooding such 
as waterlogging and frost stress.

Past experience with hailstorms was also posi-
tively associated with the use of package C1F0R1S0. It 
was revealed that the likelihood of using this package 
increased by 0.52% for farmers who had experienced 
frequent hailstorms in the recent past. Similarly, these 
farmers could be implementing a responsive strategy that 
included farm risk reduction through diversified produc-
tion means. Previous study by [38] had a contrary result 
where frequent hailstorms were the greatest source of 
production risks related to climate change that discour-
aged adoption of production techniques posing a threat 
to yield stability in rural Amhara Ethiopia.

Distance (measured by walking time) to the input 
and output market negatively influenced usage of CSA 
practices. An increase in time taken to reach the mar-
ket by 1  min reduced the probability of using packages 
C1F0R1S1, C1F1R0S1 and C1F1R1S0 by 0.05, 0.07 and 0.07%, 
respectively. Longer distance to the market for such 
larger packages increases the transaction costs involved 
in input purchase and output sale. Teklewold et  al. [8] 
noted that apart from affecting the access to the market, 
distance can also affect the accessibility of new technolo-
gies, information and credit institutions, thus having a 
negative relationship.

Group membership had a positive and significant influ-
ence on the usage of packages: C1F1R0S0 and C1F1R1S0. 
Rather than not using any package, belonging to a farmer 
group increased the probability of using these two pack-
ages by 18.8% and 2.2%, respectively. Farmer groups are 
important channels through which extension agents and 
other farmer service providers (like insurance) use to 
access farmers. Further, field management practices like 
construction of terraces could be possibly achieved in 
mobilized labour in groups. Again, through group net-
works, members get to exchange ideas, handle farm dem-
onstrations and also get connections to dissemination of 
important research findings. Ward and Pede [39] notes 
that learning from the experiences of peers increases the 
probability of technology adoption due to the fact that 
farmers trust more practical experiences demonstrated 
by their peers since they share much in common includ-
ing shared labour.

The number of contacts with extension service provid-
ers positively influenced the use of C1F1R1S0 and nega-
tively influenced the use of C1F1R0S0. One more annual 
contact with extension agents increased the probability 
of using C1F1R1S0 by 0.46% but reduced the probability 
of using C1F1R0S0 by 3.0%. This suggests that extension 
service played a crucial role in implementation of larger 
packages by farmers. It further suggests that the infor-
mation disseminated had inclusion of a climate change 
dimension that promoted the use of the larger package. 
However, on the other hand, reduction in probability 
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of using C1F1R0S0 suggests that the goal of promoting 
CSA technologies by extension service agents had mixed 
effects. It appears that farmers who used package 
C1F1R0S0 with only crop and field management practices 
were sceptical about the veracity of the information and 
its ability to improve their production, thus opting not 
to use any package. This is consistent with the findings 
of a study in Zambia by [14] which indicated that exten-
sion agents were involved in a lot of activities that include 
delivering inputs and administering credit; hence, farm-
ers may question their skills impacting on their trust and 
eventual decline in implementation.

Access to credit had a positive and significant influence 
on the use of C1F1R1S0 but a negative influence on the use 
of C1F0R0S0 and C1F1R0S0. The results indicate that farm-
ers who received credit in the previous farming season 
were 0.28% more likely to use C1F1R1S0. Credit access 
enables farmers to meet costs involved in implement-
ing CSA technologies, especially including expensive 
ones like use of improved livestock breeds and irriga-
tion present in this large package. Similarly, [40] explain 
that credit constraints negatively influence investment in 
improved seed and inorganic fertilizers, suggesting that 
credit-constrained households are less likely to adopt 
CSA technologies that require cash outlays. Access to 
credit reduced the probability of using packages C1F0R0S0 
and C1F1R0S0 by 4.6% and 15.7%, respectively. A nega-
tive influence of credit access to usage of C1F0R0S0 and 
C1F1R0S0 may suggest that these farmers diverted credit 
to fund non-farming expenses like school fees and medi-
cal, thus opting not to use any package.

Average adoption treatment effects for the CSA packages
After determining the drivers of choice of CSA pack-
ages in the first stage, treatment effects were deter-
mined in the second stage to find the effect of usage of 
the packages on household food security. The ordinary 
least squares regression of Household Food Consump-
tion Scores (HFCS) and Household Diversity Scores 
(HDDS) of the households were estimated for each 
combination of CSA practices, taking care of the selec-
tion bias correction terms from the first stage. At this 
stage, treatment effects which are the most important 
part of this stage were reported.

Appendices 1 and 2 present the food categories for 
HFCS and HDDS. For interpretation, HFCS were pre-
ferred to HDDS as the latter only capture meals taken 
within 24  h which may not include occasional meals 
taken on particular days like market days within a 
week. However, HDDS were used for sensitivity analy-
sis. It is also important to note that the two scores were 
strongly correlated (0.97) as indicated in Table 7.

Table 7 presents the average adoption effects in terms 
of HFCS and HDDS under actual and counterfactual 
conditions. In Table 7, X1 represents the treated group 
(adopters) and X2 represents untreated (non-adopters), 
β1 represents treated characteristics (adoption state) 
and β2 untreated characteristics (non-adoption state). 
The level effect is the difference in food security sta-
tus as a result of usage of the specified package. The 
impact is as a result of the difference between treated 
with treatment characteristics and the untreated with 
untreated characteristics (β1X1) −  (β2X2). Except users 
of C1F0R1S0, C1F1R1S0 and C1F1R1S1, all the rest using 
other packages would be better off in the counterfac-
tual scenarios (non-usage) suggesting availability of 
other better options. All packages that included farm 
risk reduction practices apart from C1F0R1S1 had a pos-
itive impact on the welfare of farmers. This implies that 
farmers need to manage their farm risks to be assured 
of improved food security in the uncertain events of cli-
mate change.

For larger packages (C1F1R0S1, C1F1R1S0 and C1F1R1S1), 
all users were more food secure compared to their coun-
terparts who did not use CSAs in the actual scenarios. 
Based on these results, a complete package with crop 
management practices, field management practices 
and farm risk reduction practices and soil management 
(C1F1R1S1) had the greatest overall effect of 30.14 and 
1.72 scores on the welfare of farmers estimated using 
both HFCS and HDDS, respectively. This implies that 
farmers who used this package were 56.83% and 25.44% 
more food secure compared to their counterparts who 
chose not to use any CSA practice. Thus, farmers may be 
more food secure if they use climate-smart technologies 
within this package. This package is quite comprehen-
sive as it addresses a wider spectrum of both field and 
soil conditions while also mitigating upon soil degrada-
tion for production stability. In general terms, the overall 
result is that non-usage of this (C1F1R1S1) package would 
be irrational as farmers will be better off in terms of food 
security if they use this package as it addresses a wide 
range of climate change challenges.

Conclusions and policy implications
The results indicate that adoption rate of CSAs was 
still low with many farmers implementing low capital 
requirement practices. This may be attributed to small-
holder agriculture that is resource constrained. Crop 
management practices were the most dominant perhaps 
due to their low-cost implications. This suggests the need 
for farmer empowerment to progressively move towards 
more capital-intensive practices.

A larger package which comprised of crop manage-
ment, field management, risk reduction practices and 
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specific soil management practices (C1F1R1S1) had the 
highest impact on food security. This package is quite 
comprehensive as it addresses a wider spectrum of both 
field and soil conditions while also mitigating upon soil 
degradation for production stability. Thus, for farmers 
to benefit more from CSAs, they need to incorporate all 
CSAs as much as possible. Findings were that the likeli-
hood of usage of this package was positively influenced 
by gender, farm size and farm assets. Its usage was more 
likely on larger pieces of self-owned plots, for male-
headed households with more farm assets. Thus, CSAs 
have the potential to alleviate food insecurity among 
smallholder farmers if used in combinations and to a 
larger extend.

Farmers should then be encouraged to incorporate 
larger CSAs packages which comprise at least a member 
in each of the four categories: crop management, field 
management, risk reduction practices and specific soil 
management practices, to have a higher effect on food 
security status. This could be through first sensitization 
on the need to invest in productive farm assets to ena-
ble them absorb risks associated with climate change at 
the same time enhancing their ability to uptake impor-
tant CSAs. The sensitization could be done in groups 
by extension service providers. Secondly, land fragmen-
tation should also be discouraged through civic educa-
tion and engagement in alternative income-generating 

Table 7  Impact of use and non-use of CSA packages on food security estimated using HFCS of farmers by ESR

Standard errors are in parentheses. C crop management, F field management, R risk reduction, S specific soil management

Package HFCS HDDS

Treated 
characteristics 
(β1)

Untreated 
characteristics 
(β2)

Impact/returns Treated 
characteristics 
(β1)

Untreated 
characteristics 
(β2)

Impact/returns

C1F0R0S0 Treated (X1) 49.14 (1.92) 49.52 (0.96) − 0.38 5.31 (0.21) 6.06 (0.12) − 0.25

Untreated (X2) 52.35 (2.23) 65.07 (0.80) − 12.72 5.68 (0.019) 6.89 (0.07) − 1.21

Level effects − 3.21 − 15.54*** − 15.93 − 0.37* − 0.83*** − 1.58

C1F0R1S0 Treated 65.75 (7.24) 56.52 (2.25) 9.23 7.20 (0.55) 6.36 (0.18) 0.84

Untreated 63.29 (3.68) 63.65 (0.78) − 0.36 6.69 (0.31) 6.74 (0.07) − 0.05

Level effects 2.46 − 7.13*** 2.1 0.51 − 0.38** 0.46

C1F0R1S1 Treated 61.09 (3.37) 80.84 (2.72) − 19.75 6.56 (0.30) 6.63 (0.10) 0.07

Untreated 57.40 (2.63) 63.82 (0.80) − 6.42 6.25 (0.23) 6.76 (0.06) − 0.51

Level effects 3.69 17.02*** − 2.73 0.32 − 0.13 − 0.20

C1F1R0S0 Treated 55.77 (1.09) 65.81 (1.01) − 10.04 6.14 (0.09) 7.04 (0.09) − 0.90

Untreated 59.44 (0.96) 69.11 (0.93) − 9.67 6.29 (0.09) 7.18 (0.09) − 0.89

Level effects − 3.67*** − 3.30*** − 13.34 − 0.15 − 0.14 − 1.04

C1F1R0S1 Treated 63.89 (2.18) 69.99 (0.80) − 6.10 6.70 (0.23) 7.52 (0.09) − 0.82

Untreated 63.59 (1.94) 63.69 (0.83) − 0.10 6.76 (0.07) 6.75 (0.14) 0.01

Level effects 0.30 6.30*** 0.20 − 0.05 0.76*** − 0.05

C1F1R1S0 Treated 74.70 (1.03) 62.72 (0.83) 11.98 7.66 (0.10) 6.35 (0.09) 1.31

Untreated 75.75 (1.20) 60.64 (0.89) 15.11 7.90 (0.11) 6.51 (0.08) 1.39

Level effects − 1.05 2.08* 27.09 − 0.25** − 0.16* 1.15

C1F1R1S1 Treated 83.92 (1.01) 68.04 (0.82) 15.88 8.48 (0.11) 7.06 (0.10) 1.42

Untreated 79.09 (1.23) 53.51 (0.82) 15.58 8.19 (0.12) 6.76 (0.07) 1.43

Level effects 4.83*** 4.53*** 30.41 0.29** 0.31*** 1.72

Pairwise correlation
HDDS HFC

HDDS 1

HFC 0.9652*** 1
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activities by farmers to benefit more from CSAs when 
practiced on relatively bigger portions of land.
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Food groups Score
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Fruits 1

Meat 1
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Fish and other sea food 1

Legumes, nuts and seeds 1

Milk and milk products 1

Oils and fats 1

Sweets 1

Spices, condiments and beverages 1
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