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Abstract 

Smallholder farmers can adapt to climate variability and change through sustainable land management (SLM) prac-
tices that help to offset the negative impacts at farm level. However, use of these practices as adaptation strategy 
remains low in Ethiopia in general and the study sites in particular. This study aimed at examining the factors that 
determine farmers’ decision to use SLM measures and to quantify the impact of the practices on crop productivity 
at household and plot level. The study was based on household- and plot-level primary data and employed nearest-
neighbor matching technique to quantify the impact of using the practices on value of production at household level 
and plot level. The results revealed that households that implemented SLM practices within the period (2004–2009) 
experienced a 24.1% higher value of production over non-users in 2016. Similarly, plots that received SLM measures 
within the period (2004–2009) experienced a 28.6% increase in value of production in 2016. The study also made fur-
ther analysis at plot level using continuous treatment effects in order to take into account the number of years a plot 
has been under the practice. The result showed plots with SLM structure that are maintained for at least 6 years have 
a positive increase in value of production at the end of the 6th year, while those that received the practices recently 
or those that lacked continuous maintenance did not experience a statistically significant increase in value of produc-
tion. The result also showed marginal benefit of sustaining the SLM practices increases over time at an increasing rate. 
The implication is that use of SLM measures and maintenance of the structures are crucial to reap significant benefits 
from the practices. Although value of production increases given the SLM practices, implementation is labor intensive 
and there is trade-off with other agricultural activities. Therefore, policy measures are required to incentivize imple-
mentation and maintenance of the SLM structures.
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Background
In primarily agricultural-based economies, the immedi-
ate trade-off between short-term welfare and long-term 
development represents major challenges. In this type 
of economies, land degradation poses major develop-
ment challenge contributing to reduced output, lower 

economic growth and increased poverty [1, 2]. In recent 
years, this challenge is more aggravated in the face of 
changing climate and variability. More particularly, heavy 
dependence on rain-fed agriculture makes the sector 
most vulnerable to climatic change risks and led agricul-
tural productivity to unsustainable level [3, 4].

Ethiopia’s biophysical potential for sustainable agricul-
tural development opportunities has been continuously 
challenged by land degradation and poverty [5, 6]. The 
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problem is further aggravated by climate variability and 
change, population pressure, limited use of sustainable 
land management (SLM) practices, deforestation, rug-
ged terrain characteristics, erratic rainfall, vulnerable soil 
and heavy dependence on rain-fed agriculture [7, 8]. The 
on-site cost due to erosion of top soil is estimated to be 
2.0–6.75% of Ethiopia’s agricultural GDP per annum [9, 
10]. Ethiopia could also experience negative and positive 
off-site productivity effects on downstream plots in terms 
of eroded soil that is washed out [11, 12].

On-site and off-site costs of soil erosion are also critical 
challenges in the Dabus sub-basin of the Blue Nile River 
being intensified by the prevailing unsustainable land 
use system, watershed degradation, erratic rainfall and 
severe deforestation. Agricultural practice in the area is 
dominated by cereal crops cultivation, which necessitates 
frequent plowing that leads to little ground cover during 
the rainy season that in turn renders the soil to be more 
susceptible to erosion [13]. Therefore, there is an urgent 
need for efficient mechanisms that helps to reduce soil 
loss and improve agricultural output in the sub-basin.

Previous studies on productivity impacts of soil conser-
vation measures revealed diverse results. A study by [14] 
in the Northern part of Ethiopia suggests that plots with 
stone terraces experience higher crop yields. A study by 
[2] also estimated that users of soil and water conserva-
tion measures achieved 17–24% higher value of produc-
tion compared to non-users. Similarly, a soil and water 
conservation program evaluation study in Honduras by 
[15] revealed a positive effect on value of production. 
Conversely, [8], using matching methods and switching 
regression analysis on farm-level data from high rainfall 
areas in Northern Ethiopia revealed that plots with bunds 
resulted in lower yields compared to non-conserved plots.

A study by [16] indicated that only 31% of smallholder 
farmers in Ethiopia adopted soil and water management 
practices to address perceived changes in rainfall and 
only 4% adopted water harvesting technologies. Study 
results by [17, 18] also found similar results in South 
Africa and Kenya. However, there is inadequate evidence 
to what extent that smallholder farmers have used SLM 
practices for climate risk management in Sub-Saharan 
Africa in general and in Ethiopia in particular. The results 
of these previous studies are highly aggregated and are 
of little help in addressing local conditions in relation 
to adaptations to climate change. The studies have also 
paid little attention to the analysis of local factors that 
influence smallholder farmers’ use of SLM practices as 
adaptation strategy. Moreover, the studies overlooked 
the likelihood crop productivity impact of SLM practices 
both at farm and plot level.

Since adaptation is a local response to climate stimuli, 
agro-ecology-specific factors that affect famers’ decisions 

to use SLM practices and measuring the impact of the 
practices on rural livelihood is an important research gap 
that needs to be addressed. Hence, the present study aims 
to contribute to formulation of location specific climate 
change adaptation strategy through identifying house-
hold- and plot-level factors that determine use of SLM 
practices and productivity impact at both household and 
plot level. For this purpose, the study employed nearest-
neighbor matching technique to measure household- and 
plot-level impacts of adopting SLM practices on value of 
agricultural production. The study also aims to under-
stand the timing of benefits and then to calculate mar-
ginal benefits of each additional year of maintenance. For 
this purpose, it employed a continuous treatment effect 
estimation method and measured the length of time a 
plot of land must be maintained under SLM practices in 
order to experience a benefit.

Methods
Study area
The study was conducted in two major agro-ecologies 
of the Dabus sub-basin of the Blue Nile River in North-
West Ethiopia  (Fig.  1). The sub-basin is characterized 
by hot to warm moist and sub-humid lowlands. It has 
an area of 21,030 km2, and the altitude ranges between 
48 and 3150 masl. Annual rainfall is between 970 and 
1985 mm, and maximum and minimum annual temper-
ature varies between 20–35 and 8.5–20  °C, respectively. 
Considerable part of the sub-basin is cultivated and is 
typified by maize–sorghum and maize–sorghum–peren-
nial complex.

Data and sampling procedure
A household survey conducted in November and Decem-
ber 2016 enumerated 734 farm households, which are 
spatially distributed in the wet lowland and dry lowland 
agro-ecologies of the Dabus sub-basin (Table 1). First 20 
Woredas (districts) in the sub-basin were stratified into 
the two agro-ecologies. Two districts were randomly 
drawn from each agro-ecology (stratum) to represent 
different aspects of the agricultural activity in the sub-
basin. Probability proportional to size (PPS) sampling 
procedure was employed to draw representative Kebeles 
(smallest administration units) from the selected dis-
tricts. Accordingly, three Kebeles were drawn from each 
district making the total number of Kebeles in the sam-
ple 12. Finally, household heads were drawn from the 
selected Kebeles using PPS sampling procedure.

The household survey employed a structured question-
naire that addressed household characteristics, farm-
ers’ perceptions and use of SLM practices, factors that 
affect use of SLM practices, agricultural inputs and out-
puts, crop enterprise income and plot-level biophysical 
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characteristics. In addition, focus group discussions were 
conducted at village level to substantiate findings from 
household survey data. Data on grain prices for the years 
2004–2016 are obtained from the Regional Office of the 
Ethiopian Central Statistical Agency.

Data analysis
The study used both descriptive and econometric 
methods to analyze the data. Descriptive method was 
employed to compare the two agro-ecologies of the study 
area and to describe users and non-users of SLM prac-
tices. Productivity was measured using gross value of 
output per hectare. Monetary value was used to meas-
ure output performances as households cultivate more 

than one crop and there needs to be some basis for 
aggregation.

The econometric models are used to address two pri-
mary questions. First, we calculated the impact that 
SLM measures have on value of production for users 
compared to non-users and at plot level, for plots that 
received the SLM practices versus those that did not. In 
doing so, we used a probit regression technique to have 
insight on which type of household or plot is more likely 
to use and maintain the SLM structures. Second, we 
estimated the marginal benefit of maintaining the SLM 
structure from year to year and how long farmers must 
maintain the structures in order to experience a benefit.

Specification of the probit model
Technology adoption models are based on farmers’ util-
ity or profit-maximizing behavior [19]. The assumption 
is that farmers adopt a technology/practice only when 
the perceived utility or profit from using new technol-
ogy is greater than the traditional or the old technology. 
On this assumption, probit regression model is selected 
to analyze determinants of farmers’ decision to use SLM 
practices as adaptation strategy. Suppose that Yj and Yk 
represent a household’s utility for two choices, which are 
denoted by Uj and Uk, respectively. The linear random 
utility model could then be specified as:

Fig. 1  Map of the study area and agro-ecological zones

Table 1  Distribution of  respondents by  agro-ecology 
and District

Wet lowland Dry lowland

District Number of respond‑
ents

District Number 
of respondents

Assosa 184 Mengie 189

Bambasi 183 Sherkole 178

Total 367 Total 367



Page 4 of 12Asrat and Simane ﻿Agric & Food Secur  (2017) 6:61 

where Uj and Uk are perceived utilities of adaptation 
methods j and k, respectively, Xi is the vector of explana-
tory variables that influence the perceived desirability of 
the methods, Bj and Bk are parameters to be estimated, 
and εj and εk are error terms assumed to be indepen-
dently and identically distributed [20]. Therefore, if a 
household decides to use option j, it follows that the per-
ceived utility from option j is greater than the utility from 
other options (say k) depicted as:

The probability that a household will use method j among 
the set of SLM options could then be defined as:

where P is a probability function, Uij, Uik and Xi are as 
defined above, ε* = εj − εk is a random disturbance term, 
β* = (βi − βj) is a vector of unknown parameters that can 
be interpreted as a net influence of the vector of inde-
pendent variables influencing the decision to use the 
SLM practices, and F(β*Xi) is a cumulative distribution 
function of ε* evaluated at β*Xi. The dependent variable is 
dummy (binary), which takes a value zero or one depend-
ing on whether or not a farmer is using any of the SLM 
practices as adaptive response to climate variability and 
change. Contrariwise, the explanatory variables are either 
continuous or binary/categorical. Then, the probit model 
is specified as:

where β is vector of parameters of the model, Xj is vector 
of explanatory variables, and εj is the error term assumed 
to have random normal distribution with mean zero and 
common variance δ2 [2]. Ij = Unobservable (latent varia-
ble) households’ actual decision to use SLM practice and 
what we observe is a dummy variable (use of land man-
agement measures) which is defined as: 1 if Ij* > 0 and 0 
otherwise

Nearest‑neighbor matching
Given that a variety of differences exist between users 
and non-users of the SLM practices, it is important to 
control for these potential underlying effects in order to 
ensure reliable impact estimates. Thus, nearest-neighbor 

(1)Uj = βjXi + εj and Uk = βkXi + εk

(2)Uij

(
βjXi + εj

)
> Uik(βkXi + εk), k �= j

(3)

P(Y = 1|X ) = P
(
Uij > Uik

)

P
(
βjXi + εj − βkXi − εk > 0|X

)

P
(
βjXi − βkXi + εj − εk > 0|X

)

P
(
X∗Xi + ε∗ > 0

∣∣X = F
(
β∗Xi

)

(4)I∗j = βXj + εj

(5)pro(adoption = 1) = ϕ
(
βXj

)

(6)pro(adoption = 0) = 1− ϕ
(
βXj

)

matching approach was used as it allows matching users 
to non-users at household and plot level. In addition, a 
continuous treatment effect estimation technique devel-
oped by [21] has been adopted to quantify differences in 
value of production.

In order to control for causal effect that arises due to 
self-selection bias or methodical assignment of treatment 
groups, we estimated the average treatment effect on 
the treated (ATT), using the nearest-neighbor matching 
method (NNM). This method matches users and non-
users/control households based on observable charac-
teristics and calculate the mean difference in outcomes 
between the two groups [22]. Thus, the control group is 
matched on the probability (propensity score) of adopt-
ing the SLM practices given a set of observable character-
istics from the probit regression model. When matching 
users with non-users, we used the following definitions 
for user households: (1) the household implemented and 
continues to maintain stone terraces or soil bunds or 
grass strips on their cultivated land and (2) the household 
implemented the structures at least on 1/4 of the total 
cultivated land.

User households are paired with non-users when 
their respective observable characteristics are simi-
lar, as determined by a weighted average of the distance 
between values of the observed characteristics. Compari-
son households with propensity scores that are nearest 
to user households receive the highest weights and are 
matched accordingly. We trimmed 5% of the sample from 
the top and bottom of the non-participant distribution in 
terms of propensity scores to ensure comparisons over 
the same propensity score range. Then we compare aver-
age outcomes of user households with the matched non-
user/comparison households. Once a balanced sample 
is realized, NNM technique was applied to estimate the 
average treatment effect of using SLM practices.

Each user household is matched to a non-user house-
hold with its closest propensity score allowing for five 
nearest neighbors in terms of absolute difference in pro-
pensity scores. Thus, for each household i, there are two 
potential outcomes: using SLM practice or not using. We 
denote users as Ai(1) and non-users as Ai(0), whereby the 
impact of using the practice is the difference in outcome 
between users and non-users (Δ = A1 − A0). Thus, D is 
an indicator variable equal to 1 if the household uses the 
SLM practice and 0 otherwise. Then we find the average 
impact of the treatment on the treated (ATT) as follows 
when X is a vector of control variables:

There are two key results from this analysis. The first 
result is obtained from estimating the probit model 

(7)
ATT = E(�|X ,D = 1 ) = E(A1 − A0|X ,D = 1)

= E(A1 |X ,D = 1) − E(A0|X ,D = 1)
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which predicts the probability of each household using 
SLM practice. This result allows us to identify specific 
household-level determinants of using SLM practices, 
controlling for initial characteristics. The probit model is 
also integral to obtaining a balanced sample of user and 
non-user observations that help us to estimate impact. 
The second result estimates the average impact of SLM 
practices through measuring the difference in total value 
of production between users and non-users.

Continuous treatment effect estimates
We followed [21] to estimate the continuous treatment 
effect. For this purpose, farm plots were indexed by I 
where i = 1, 2… N and letting t = T where t is the level 
of treatment defined as number of years a household has 
been implementing the selected SLM practices on a spe-
cific plot. Accordingly, there is a certain level of potential 
outcome, Yi(t) capturing a response to a level of treat-
ment. A continuous treatment is considered where the 
treatment level lies in the interval [t0, t1] and defines the 
potential outcome as value of production per hectare. For 
each plot, observation is made on the treatment level, 
vector of covariates Xi and potential outcome corre-
sponding to the received level of treatment with interest 
of calculating average dose–response function defined as 
μ(t) = E[Yi(t)].

Un-confoundedness for binary treatments given a set 
of covariates explaining adoption and non-adoption is 
generalized by [21]. Following this, in a continuous treat-
ment case conditional on a set of covariate Xs, the extent 
of treatment is also random. Our assumption is that the 
number of years of maintaining the SLM structures is 
random conditional on a set of plot and household char-
acteristics. Since the length of time for maintenance 
also depends on unobservable characteristics of farm-
ers, we proxy the decision to invest labor/and or finance 
by including a binary variable that denotes manure and 
fertilizer application. Thus, we assume that farmers that 
decide to invest on agricultural inputs such as manure 
and fertilizer may have other non-observable traits that 
can be linked to investment decisions on agricultural 
technologies. Thus, we captured some of the non-observ-
able characteristics by including these covariates.

We define the generalized propensity score (GPS) fol-
lowing [21]. Let r(t, x) = fr/x(t, x) be the conditional den-
sity of the treatment given the covariates, and then the 
GPS is R =  r(T, X). As in the case of binary propensity 
score, GPS has a balancing property that ensures within 
each given strata (where the conditional density holds the 
same value), the probability that T = t does not depend 
on the covariates X. The estimation of the dose–response 
function requires that we first compute the conditional 
expectation of outcomes as a function of the treatment 

level t and the GPS score R. Then the dose–response at a 
particular t level of treatment is the conditional expecta-
tion over the GPS and given by:

In order to implement the above estimation, the first 
stage estimates the treatment level given the covariates: 
Ti/Xi ∼ N

(
β0 + β ′

1Xiσ
2
)
. In the simple normal model 

β0, β1, σ can be estimated by maximum likelihood. The 
GPS is thus estimated as:

In the second stage, the conditional expectation of Yi 
given Ti and Ri is estimated using a quadratic approxima-
tion as suggested by [21].

The parameters (α0,α1 . . . α5) are estimated using the 
calculated GPS Ri by ordinary least squares. Given the 
second-stage estimated parameters, the average potential 
outcome at treatment level t is estimated to obtain the 
entire dose–response function. We used bootstrap meth-
ods to calculate more robust estimates, standard errors 
and confidence intervals. The results and discussion sec-
tion presents results for both binary treatment at house-
hold and plot level and the continuous treatment effects 
at plot level.

Results and discussions
Comparison of agro‑ecologies on the use of SLM practices
Responses to climate shock through use of different 
land management measures are common in both agro-
ecologies though intensity of use shows some degree of 
variation. Soil and water conservation measures and 
agronomic practices are common SLM measures among 
smallholder farmers in the study area. The relevance of 
these measures is reported to be increasing from time to 
time to adapt agricultural practices to the challenges of 
declining productivity attributed to climate factors [23].

The crux of this paper is to assess responses to climate 
variability and change through SLM practices including 
soil bunds, stone bunds, grass strips and to measure the 
impact of these practices at household and plot level. 
Accordingly, the two agro-ecologies were compared in 
terms of use of these practices. In the dry lowland agro-
ecology, 25% of the respondents indicated use of soil/
stone bunds while 12% stated use of grass strips indi-
cating that about 37% the respondents have used these 
measures. In the wet lowland agro-ecology, use of the 
SLM measures is generally higher (52%) where 35% of 

(8)
µ(t) = E[β(t, r(d,X))] = E[Y (t)] where β(t, r)

= E[Y /T = t,R = r]

(9)
∧

R
i
=

1√
2π

∧

σ 2

exp

(
−

1

2σ 2

(
Ti −

̂
β0 − β̂1Xi

)2
)

(10)E[Yi,Ri] = α0 + α1T
2
i + α2T

2
i + α3Ri + α4R

2
i + α5TiRi
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the respondents used stone/soil bunds and 17% are users 
of grass strips (Table 2). The difference between the two 
agro-ecologies in the use of the practices is statistically 
significant (χ2  =  18.82; P  <  0.001). This result implies 
that the role of SLM measures in coping with the adverse 
impacts of climate variability and change is well recog-
nized by farmers though the intensity of use statistically 
varies between the two agro-ecologies.

Comparison of users and non‑users of SLM practices
Unlike short-term land management technologies that 
reap increased yields within a season or year, benefits 
from long-term SLM measures may accrue over longer 
time horizons. Given this lag, the household survey for 
this study was designed to take into account previous 
land management intervention that farmers have imple-
mented and the length of time that the practices have 
been maintained. Here, only three types of SLM prac-
tices, namely soil bund, stone bund and grass strip, were 
identified as the most common practices in the area. 
Accordingly, households that constructed and main-
tained any of these practices on at least 1/4 of their cul-
tivated land since 2004 and onward and maintain the 
structures until the date of the survey in 2016 are con-
sidered users/adopters. With this criterion, 41% of the 
responds are found to be users of the practice.

Comparison is made between users and non-users of 
the SLM measures in terms of socioeconomic and envi-
ronmental variables. The results revealed that households 
with farmland that is poor in fertility and steeper slope 
have adopted the SLM practices than those households 
with fertile plot and plain field. Moreover, significant per-
centage of the users have applied fertilizer and manure 
and received extension advice on soil conservation meas-
ures. The comparison also revealed significant differences 
between users and non-users in terms of frequency of 
challenges faced from extreme climate events, time spent 
in non-farm activities, cultivated land size, literacy level 
and other household characteristics (Table 3).

Following the comparison, the overall effect of the SLM 
practices is assessed through matching all user house-
holds with non-use households. In doing so first we made 

a probit model estimation to identify determinants of use 
of the practices and then evaluate if any impact exists due 
to the practice at household and plot level. To account 
for the hypothesized time lag for benefit realization, we 
split the user sample by reported date that the soil con-
servation measures were first built on plots. Then, we 
separately evaluate users that built the structure during 
the initial period (2004–2009) and in the recent period 
(2010–2016). The analysis started since 2004 because 
only 6% of the total users implemented the practices in 
any given year prior to 2004. Accordingly, for each of 
these periods separate NNM estimations were under-
taken, maintaining the same variables for each analysis 
with a balanced sample.

Determinants of use of sustainable land management 
practices
Given that variety of differences exist between users and 
non-users of SLM practices, it is important to control for 
these potential underlying effects in order to ensure reli-
able impact estimates. Probit model is used to match user 
and non-user households and to provide information on 
household’s probability of using the SLM practices on 
cultivated land. The probit regression results for house-
hold- and plot-level determinants of use of SLM practices 
are presented in Tables 4 and 5.

The results from the probit model estimation indicate 
that biophysical factors such as share of non-fertile lands 
and slope category of plots are significantly different 
between users and non-users, suggesting that plots on 
steep slopes; and plots with semi-fertile and non-fertile 
soil are correlated with land management decisions. On 
average, probability of using SLM practices increases 
by 21.1% as the proportion of plots with steep slope 
increases by 1%. This finding is in line with results of pre-
vious studies that showed a positive relationship between 
slope category of a plot and land management decisions 
[23, 24].

Moreover, respondents that have past experience of 
soil erosion problems are more responsive through SLM 
measures to combat similar future incidents. The prob-
ability of implementing SLM practices increases on 

Table 2  Use of SLM measures for climate change adaptation

Use of stone/soil bunds and grass strips Agro-ecology χ2 value P value

Wet lowland Dry lowland Total

N % N % N %

Non users 176 48 231 63 407 55 14.42 0.001

Users 191 52 136 37 327 45

Total 367 100 367 100 734 100
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average by 2.3% for households that have past experi-
ence of erosion risk on their cultivated land and at plot 
level, this probability increases to 3.4%. Users of the SLM 
practice have also past experience of crop failure due to 
terminal moisture stress and depletion of soil fertility as 
compared to non-users. In this regard, the probability of 
adopting SLM practices increases by 1.1% for households 
that have experience of crop failure due to drought. Like-
wise, probability of using SLM practices increases in the 
range of 3.9–7.1% as the proportion of infertile and semi-
fertile plots increases by 1%. Similarly, the probability of 
implementing SLM practices increases by 42.1% as the 
proportion of non-fertile plots increases by 1%.

Distance from market revealed significant negative 
correlation with probability of using SLM practices. The 
probability of implementing SLM practices decreases 
by 3.1% as distance from market increases by 1 km. This 
finding may reveals that if farmers do not realize a market 
outlet for increased production, they may be less willing 
to implement the structures that could increase yields. 
Moreover, fertilizer/manure application is included as a 
matching binary variable as proxy to willingness to invest 
money/labor in technologies/innovations to increase 
output. The result shows that the decision to apply fer-
tilizer/manure is positively related to SLM adoption 
decision verifying willingness of SLM users to invest in 
productivity enhancing technologies. The probability of 
practicing SLM increases by 5.3% for those households 

who are using fertilizer or manure on their cultivated 
land. The plot-level analysis revealed that the probability 
of implementing SLM practices increases by 14.3% for 
plots that received fertilizer or manure.

It is important that the probit model discussed above 
includes covariates that would not have changed after 
adopting land management practices. For example, we 
included total landholding size, biophysical characteris-
tics of agricultural land, such as soil fertility and slope, 
and household head characteristics which are less likely 
to change over the study period. In order to control for 
endogeneity, we did not match user and non-user house-
holds based on assets which may have been affected by 
successful or unsuccessful investment in SLM practices 
(e.g., variables that proxy income such as changes in live-
stock holdings).

Impacts of SLM practices on value of production
Propensity scores are estimated both for the treated 
and control households (Fig.  2). Accordingly, the esti-
mated propensity scores for the treated households 
vary between 0.069 and 0.964 with mean of 0.688. For 
the control households, the estimated propensity scores 
vary between 0.005 and 0.928 with mean of 0.401. There-
fore, the common support region lies between 0.069 and 
0.928. Flowing [10, 25] to evaluate the average treatment 
(ATT) effect on the treated, it is important to ensure that 
for each treated household a close non-treated is found. 

Table 3  Comparison of users and non-users of SLM practices

Variable Non-users Users Mean difference (P value)

HH head age (years) 46.4 43.7 0.00

HH head sex (male = 1) 0.9 0.8 0.87

Education (literate = 1) 0.4 0.5 0.03

Household size (number) 0.59 0.58 0.61

Time spent on non-farm activity (months) 3.5 4.3 0.00

Land size in hectares 2.3 2.4 0.45

Household experienced erosion (yes = 1) 0.2 0.3 0.05

Household experienced drought (yes = 1) 0.4 0.6 0.03

Adult equivalent ratio 0.3 0.3 0.72

Steep slope (proportion) 0.1 0.2 0.00

Mixed slope (proportion) 0.05 0.1 0.21

Manure use (proportion of farmers) 0.4 0.6 0.04

Fertilizer use (proportion of farmers) 0.3 0.6 0.05

Received credit (yes = 1) 0.3 0.3 0.24

Semi-fertile plots (proportion) 0.3 0.4 0.13

Non-fertile plots (proportion) 0.2 0.4 0.00

Extension advice on SLM (yes = 1) 0.4 0.8 0.00

Distance from market (km) 5 4.6 0.22

Wet Kola agro-ecology (1 = yes) 0.3 0.4 0.00

Dry Kola agro-ecology (1 = yes) 0.2 0.1 0.00
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To ensure this, households whose estimated propensity 
scores less than 0.005 and larger than 0.928 are not con-
sidered for the matching exercise and hence a total of ten 
observations have been dropped.

It is assumed that most SLM practices require a longer 
time horizon to experience significant benefits to user 
households. In this regard, the impact of the practices 
is analyzed in two ways. First the impact on the value of 
production is analyzed using the entire sample consider-
ing households that implemented the practice between 
2004 and 2016. Then, in order to take into account the 
lag time in land management benefit, the sample is 
splinted between early users (2004–2009) and late users 
(2010–2016).

The result shows that households that implemented 
the practices in the first period (2004–2009) gained a 
24.1 percept higher value of production (significant at 
P  <  0001) in 2016 compared to matched households 
that did not implement the practice (Table 6). However, 

households that adopted the practices in later years 
(2010–2016) did not realize significant increases in value 
of production compared to matched households that did 
not implement the practice. This could be attributed to 
the fact that the time is not sufficient to allow the late 
users realize the effects of the practice in terms of replen-
ishing soil nutrients that could help increase agricultural 
production. The result also pointed out the impact of 
using SLM measures is not significant when the entire 
sample (2004–2016) is used showing only 3% higher 
value of production over non-users (Table  6). This is 
attributed to the fact that the late users have yet to expe-
rience increase in production and hence miscomprehend 
the gains by early users.

A household-level aggregation is based on the thresh-
olds that households that implemented the selected SLM 
structures on at least 1/4 of their cultivated land. This 
analysis depicted increase in value of production of early 
users of the SLM practices. However, plot-level disag-
gregated analysis allows a robustness check of the impact 
within households and across plots given differences in 
soil fertility, slope, soil degradation prevalence and appli-
cation of external inputs such as manure and fertilizer.

The plot-level results are reflections of the household-
level analysis. Accordingly, plots that received SLM 
measures in the first period (2004–2009) experienced 
a 28.6% increase in value of production (significant at 
P < 0001) compared to matched plots that did not receive 

Table 4  Probit results on  household-level determinants 
of SLM practices (2004–2016)

*, **, and *** are significance level at 10, 5 and 1%

Dependent variable: household that used SLM practices (soil/stone bund, grass 
strips) on at least 1/4 of cultivated land (Yes = 1)

Variable dy/dx SD

HH head age (years) 0.035 (0.021)

HH head sex (male = 1) 0.003 (0.021)

Land size in hectares 0.024** (0.011)

Household experienced erosion (yes = 1) 0.023* (0.041)

Household experienced drought (yes = 1) 0.011 ** (0.025)

Household size (number) 0.021 (0.003)

Adult equivalent ratio 0.013 (0.011)

Non-farm employment (months) 0.001 (0.011)

Steep slope plots (proportion) 0.211*** (0.032)

Mixed slope plots (proportion) 0.018 (0.028)

Manure/fertilizer use (yes = 1) 0.053*** (0.061)

Education of HH head (literate = 1) 0.031 (0.017)

Semi-fertile plots (proportion) 0.071** (0.037)

Non-fertile plots (proportion) 0.039** (0.062)

Extension advice on SLM (yes = 1) 0.053 (0.024)

Distance from market (km) − 0.031** (0.011)

Wet Kola agro-ecology (1 = yes) 0.241*** (0.028)

Dry Kola agro-ecology (1 = yes) 0.067** (0.046)

Assosa Woreda 0.261*** (0.053)

Bambasi Woreda 0.217*** (0.101)

Sherkole Woreda 0.042* (0.006)

Mengie Woreda 0.135* (0.015)

Number of observations = 506

Wald χ2(20) = 218.21

Prob > χ2 = 0

Pseudo R2 = 0.3232

Table 5  Probit results on  plot-level determinants of  SLM 
practices (2004–2016)

*, ** and *** are significance level at 10, 5 and 1%

Dependent variable: plots that received SLM practices (soil/stone bund, grass 
strips) (Yes = 1)

Variable dy/dx SD

HH head age (years) 0.021 (0.018)

HH head sex (male = 1) 0.023 (0.001)

Household experienced erosion (yes = 1) 0.034* (0.032)

Household experienced drought (yes = 1) 0.141** (0.025)

Plots with steep slope (proportion) 0.301*** (0.022)

Plots with mixed slope (proportion) 0.015 (0.006)

Percentage of plots received manure/fertilizer 0.143*** (0.001)

Education of HH head (literate = 1) 0.044 (0.008)

Semi-fertile plots (proportion) 0.043** (0.011)

Non-fertile plots (proportion) 0.421** (0.004)

Extension advice on SLM (yes = 1) 0.048* (0.001)

Plot size (hectare) 0.014* (0.021)

Number of observations = 506

Wald chi2(12) = 241.31

Prob > chi2 = 0

Pseudo R2 = 0.2412
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the measures (Table  6). On the other hand, plots that 
received the practice in recent period (2010–2016) had 
no significant increases in value of production compared 
to matched plots. The plot-level impact for the entire 
period (2004–2016) revealed only a 5% increase in value 
of production over matched plots, though the increase is 
not statistically significant.

Sensitivity analysis
Rosenbaum bound sensitivity test for possible hidden 
bias is presented in Table  7. As depicted in the table, 
the impact of SLM practices on value of production is 
inferred with the critical level of gamma (eγ). The effect of 
practicing SLM (treatment effect) found to be significant 
at P  <  0001 showing that the inference for the effect of 
practicing the land management measures is not chang-
ing when the odds of being treated for both users and 
non-users are changed twice (eγ = 3) in terms of unob-
served covariates. In other words, the outcome variable 
which is estimated at various level of critical value of eγ is 
significant and this indicates that all important covariates 
that affected use of the SLM practice are well addressed 

in the impact analysis. Therefore, the estimated ATT is 
not rejected at all critical values even when we set eγ at 
the largest value (eγ = 3) compared to the value set in dif-
ferent literatures eγ = 2 (100%). Therefore, the sensitivity 
analysis tends to show that the estimated impact (ATT) 
is mainly the effect of the SLM practices on value of pro-
duction for both household- and plot-level cases. And 
hence, it is insensitive to an unobserved selection bias.

Continuous treatment effect estimation results
Continuous treatment estimation procedure proposed 
by [21]) is customized to evaluate payoff period and mar-
ginal effects of the SLM measures on crop productivity 
expressed in terms of value production. Based on this 
approach, we estimate how plot-level value of produc-
tion varies depending on number of years that the SLM 
measures are maintained. Impact is evaluated at plot 
level since households implement the SLM structures 
on diverse plots in different years. And the difference in 
impact is evaluated based on the length of time that the 
practices are maintained on a specific plot.

First, we estimate the conditional distribution of the 
number of years the SLM measure is maintained given 
a set of covariates. The treatment level (defined by num-
ber of years) is estimated in order to obtain a GPS using 
plot and household characteristics. Then treatment dis-
tribution is divided by treatment level whereby we define 

Fig. 2  Common support of the propensity scores

Table 6  Average household-level and plot-level impacts of SLM practices

ATT Average Treatment Effect on the Treated

*** significant at (P < 0.000)

Impact Outcome variable (value of production) ATT SE Observations

Household level 2004–2009 0.241*** 0.081 602

2010–2016 0.013 0.044 614

2004–2016 0.030 0.044 614

Plot level 2004–2009 0.286*** 0.021 903

2010–2016 0.015 0.041 915

2004–2016 0.048 0.031 915

Table 7  Rosenbaum bound sensitivity analysis test 
for hidden bias

Gamma (eγ) P-critical

eγ = 1 0

eγ = 1.5 0

eγ = 2 0

eγ = 2.25 2.80e−12

eγ = 2.5 4.70e−18

eγ = 2.75 5.80e−14

eγ = 3 6.60e−16
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three time intervals in years: [1, 4, 5, 8, 9, 12] and for each 
interval a group of observations are identified. Accord-
ingly, there are 330, 198 and 206 observations in each 
group, respectively.

For each of the covariates in the first regression, we test 
that the mean of one group is similar to the other two 
groups combined, and thus, we are able to satisfy the bal-
ancing property. Table 8 presents whether the GPS actu-
ally balances the set of variables in the different intervals 
of the treatment level. The first three columns presented 
the test whether the covariates have the same mean for 
observations within the same treatment intervals using 
the raw data. In this case, the raw data are unbalanced 
for most of the covariates as implied by significant mean 
differences. In contrast, the last three columns are mean 
differences after adjusting for the GPS to see whether the 
covariates are better balanced when we condition on the 
estimated GPS. When comparing the two sets of results, 
we can clearly see that the covariates are better balanced 
after the GPS adjustment as implied by non-significant 
mean differences.

The test result in Table 8 reveals that adjusting for the 
GPS improves the balance of the covariates across the 
treatment intervals, and the next step is estimating the 
second-stage model that generates OLS estimates on log 
of value of production. Based on [21], the parameters of 
the second-stage estimation do not have a direct meaning 
rather they are primarily used to test whether the covari-
ates introduce any bias.

Following the bias test, we generate the derivative of 
the dose–response function, which reveals the mar-
ginal effect of an additional year of maintenance of the 
SLM structure. The result suggests that maintenance of 
the structures is crucial to reap significant benefits from 
resources invested on the practices. In this regard, users 

that maintain the practices for at least 6  years experi-
enced a positive increase in value of production at the 
end of the 6th year (Table  9). However, users that have 
maintained the practices for less than 6  years do not 
experience a statistically significant impact on the value 
of production as implied by insignificant marginal effects 
during the initial 6  years of implementation. The nega-
tive marginal effect suggests that the SLM practices may 
require a longer time horizon to slow down soil loss and 
reach a point where nutrient replenishment and other 
biophysical improvements are realized to full potential.

Beyond the 6th  year, maintaining the SLM structures 
results in positive marginal benefit that increases at an 
increasing rate. Thus, for each additional year one sus-
tains the SLM practices, the higher the gains in value 
of production. As indicated in Table  9, if a household 

Table 8  Test for equality of means between treatment groups

GPS generalized propensity score

* and ** are significance level at 10 and 5%

Variable Raw data treatment terciles Data adjusted by GPS

[1, 4] [5, 8] [9, 12] [1, 4] [5, 8] [9, 12]

HH head age (years) − 0.32 0.88** − 0.08 − 0.28 1.01 − 0.18

HH head sex (male = 1) − 0.01 − 0.21 − 0.01 0.00 0.00 0.01

Household experienced erosion (yes = 1) − 0.43* − 0.10 0.26* − 0.23 0.00 0.16

Household experienced drought (yes = 1) − 0.32* − 0.11 0.16 − 0.11 0.01 0.11

Steep plot (yes = 1) 0.01 − 0.21* 0.00 0.01 − 0.11 0.01

Manure/fertilizer (yes = 1) − 0.12* 0.00 0.11* − 0.02 0.00 0.01

Education of HH head (literate = 1) 0.00 0.01 0.01 0.01 0.01 0.00

Semi-fertile plot (yes = 1) 0.21** 0.01 0.23** 0.0 0.00 0.01

Non-fertile plot (yes = 1) − 0.12** 0.01 0.09** − 0.02 0.01 0.00

Plot size − 0.22* 0.01 − 0.00 − 0.02 0.01 − 0.01

Table 9  Estimated marginal effect per  additional year 
of maintenance

* Significant at 10% level

Years Marginal effects

1 − 0.1

2 − 0.08

3 − 0.05

4 − 0.03

5 − 0.01

6 0.04*

7 0.06*

8 0.08*

9 0.10*

10 0.12*

11 0.14*

12 0.16*
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sustains the SLM structures for 8–9  years, the value of 
production would increase by about 10% and if a house-
hold continues to maintain the structures for 11–12 years 
the expected value of production increases by 16%. In 
this regard, maintenance should continue as far as the 
increase in marginal benefit becomes statistically insig-
nificant. However, since the number of observations are 
minimal for households that sustained the SLM practices 
for more than 9 years, further enquiry is required to fully 
understand the impacts of long-term maintenance. Once 
the soil degradation problems are successfully controlled 
and the necessary soil components are replenished after 
long-term maintenance of the SLM structures, one would 
expect diminishing returns to such practices. Therefore, 
further research over a longer time period may provide 
an estimated envelope of benefits and marginal returns of 
the SLM structures in the study area.

Conclusions and policy recommendations
This study used primary data to determine smallholder 
farmers’ response to climate variability and change 
through SLM practices and how these practices affected 
crop productivity. Accordingly, the study identified spe-
cific household-level and plot-level determinants of 
SLM decisions and measured household- and plot-level 
impact of the practice on value of production. Moreo-
ver, the study estimated the average impact among users 
given different lengths of time that the land management 
structures are maintained.

The result revealed that households that implemented 
any of stone bunds, soil bunds, grass strips during the 
period (2004–2009) experience a 24.1% higher value of 
production in 2016 compared to non-users. Conversely, 
households that implemented the practices in later years 
(2009–2016) have no significant increases in value of 
production. Analysis at the plot level suggests similar 
impact, whereby plots that received SLM measures in 
the first period have 28.6% higher value of production in 
2016 compared to matched plots that did not receive the 
practices. The impact analysis also suggests long-term 
maintenance is crucial and users that maintain the struc-
tures for at least 6 years experienced a positive increase 
in value of production at the end of the 6th year.

The SLM practices are knowledge and resource inten-
sive by their very nature and may not be implemented 
easily given the awareness level and resource endow-
ments of smallholder farmers. Therefore, scaling up 
these adaptation benefits requires intervention of vari-
ous stakeholders to provide technological support and 
training. The impact analysis shows longer maintenance 
of the SLM structures provides sustainable and greater 
payoffs overtime. Given the situation in the study area, 
significant benefits are experienced when maintaining 

the structures at least for 6 years. In line with this, further 
research could come up with policy options that encour-
age farmers to accept longer time horizons. Besides, 
further research is required to provide an estimated 
envelope of long-term benefit and marginal returns of 
the SLM practices. Creating market access may also 
motivate farmers to decide on SLM investment and long-
term maintenance through boosting agricultural sur-
plus, lowering transportation costs and improving input 
distribution mechanisms. Lastly, future research should 
address modeling of synergetic effects and complemen-
tarities among different SLM measures that can possibly 
enhance benefits for smallholder farmers.
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