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Abstract 

Background  Improving food security in sub-Saharan Africa (SSA) requires increasing agricultural productivity. The 
increased and effective use of chemical fertilizers is widely recognized as one of the key strategies for achieving this 
goal. However, many smallholder farmers in SSA still grow crops without using fertilizer, and even when they do use 
fertilizer, the amount applied is often less than the recommended level. In addition to various constraints related 
to input markets and farmers’ socioeconomic characteristics, uncertainty about crop yield response is known to dis-
courage fertilizer use. The purpose of this study was to investigate how site-specific information on soil characteristics 
can help farmers optimize their fertilizer application decisions by reducing uncertainty in yield response. Our unique 
approach uses simple binary information about the expected effectiveness of nitrogen fertilizer based on a single soil 
parameter.

Methodology  The simple binary information was generated for a focal rice plot of each 70 household. Based 
on the evaluation of oxalate-extractable phosphorus content in the soil composites collected from each of these 
plots, each plot was categorized into either high or low in terms of the expected effectiveness of nitrogen applica-
tion. A randomized controlled trial was conducted to estimate the impact of providing this simple binary information 
primarily on nitrogen application rate and, consequently, on rice yield and income at plot-level and household-level.

Results  The results showed that first, compared to those in the target plots of the control households, the nitro-
gen application rate was greater in the target plots of the treatment households who were informed of the high 
expected effectiveness. Second, information that the expected effectiveness was high increased the amount 
of nitrogen fertilizer in the target plot compared to that in other plots with no information about expected effective-
ness within a household. Third, this change in fertilizer allocation led to higher rice yields and higher rice incomes 
at the household level.

Conclusions  These results highlight how the binary information about the expected effectiveness with a single 
soil parameter can improve fertilizer allocation among rice plots and its use efficiency to increase rice productivity 
and income.
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Background
Improving crop productivity and enhancing food 
security in sub-Saharan Africa (SSA) will require a 
substantial increase in chemical fertilizer use [1–4]. A 
large body of literature has identified factors explaining 
the low use of fertilizers in SSA, focusing mainly on the 
socio-demographic as well as market-related factors 
[5–7]. Additionally, recent publications show that site-
specific information on soil characteristics can influence 
fertilizer application by smallholder farmers in SSA. 
Providing plot-specific information along with input 
vouchers significantly increased farmers’ investment in 
mineral fertilizer and productivity [8]. Farmers face two 
main information deficits: technical knowledge about 
modern input use and information about the returns 
to technology adoption [9]. Information on expected 
returns has been shown to play a more prominent 
role in improving farmers’ productivity [9]. Moreover, 
mismatches between the nutrients farmers applied 
and those that are actually insufficient in soils highlight 
the importance of site-specific information to improve 
productivity [10]. These findings are particularly relevant 
for smallholder farmers in SSA as their fields are known 
to be highly heterogeneous in terms of soil fertility or 
responses to nutrient inputs even within small distances 
due to the influence of topography and past management 
practices [11–13].

Statement of the problem
Thus, there is no doubt that site-specific information 
will improve productivity. Nonetheless, what kind of 
information should be provided remains to be further 
investigated. The present study aimed to answer 
this question. Prior studies have typically provided 
information based on comprehensive soil analysis to 
bridge the gap between required and actual fertilizer 
application rates (e.g., [8, 10, 14]). However, this approach 
is costly and time-consuming. It does not necessarily 
ensure effective fertilizer management due to the 
complex relationship between soil analysis information 
and crop response to fertilizer application [3].

Objectives of this study
The novelty of our study lies in providing simplified soil 
characteristics information and examining its impact 
on farmers’ fertilizer use. Specifically, we provided 
binary information about the effectiveness of nitrogen 
fertilizer in a focal plot for rice production. The plot-
level effectiveness was assessed by the content of oxalate-
extractable phosphorus (Pox), an appropriate indicator 
for assessing phosphorus deficiency in lowland rice 
fields in the tropics [15]. Nitrogen deficiency is the most 
limiting factor for rice yield in SSA [16–18]. Instead of 

addressing nitrogen deficiency directly, we used Pox 
as an indicator of nitrogen fertilizer effectiveness. This 
approach was based on the following agronomic findings 
in our study region: first, the phosphorus deficiency 
status varies greatly from field to field [19, 20]; second, 
rice plants respond minimally to nitrogen fertilizer when 
Pox value is low because the phosphorus deficiency 
becomes the primary limiting factor for rice growth 
[21]. This strategy can be applied in the other parts 
of SSA where soil phosphorus deficiency is a primary 
yield-limiting factor for rice production, in addition to N 
deficiency [17]

We assumed that suboptimal allocation of 
fertilizer occurs because farmers are unaware of the 
heterogeneous distribution of phosphorus in the soil. 
Expected Effectiveness (EE) information on nitrogen 
fertilizer is expected to reduce uncertainty in fertilizer 
responses and help farmers optimize fertilizer allocation. 
Therefore, we hypothesize that farmers will increase 
(decrease) nitrogen fertilizer application on plots with 
high (low) EE. In this regard, our idea of optimizing 
fertilizer application differs from that of existing studies 
that adjust fertilizer application to the recommended 
level [14, 22]. For smallholder farmers in SSA, who often 
cannot afford large amounts of fertilizer, the practical 
question is how to allocate available fertilizer effectively. 
We further expected that optimized fertilizer allocation 
would increase rice yield in plots with high EE because 
of more intensive nitrogen fertilizer uses than in plots 
with low or unknown EE. Thus, our second hypothesis is 
that the provision of EE information will lead to a greater 
rice yield at the household level and, in turn, greater 
household welfare than otherwise.

The remainder of this paper is organized as follows: 
the “Methods” section describes the setting of the 
study and explains the sampling procedure as well as 
the experimental design and econometric strategies for 
comparison; the results and discussions are presented 
along with cost benefit analyses; and the conclusion and 
policy implications follow.

Methods
Setting of the study
The present study was conducted in Madagascar, where 
rice is the main staple crop and the main source of income 
for the rural population [23]. Improving rice productivity 
remains a central focus of national poverty reduction 
and food security policies. We chose the Vakinankaratra 
region, which is located in the Central Highlands zone, 
the largest rice-producing area in the country, for our 
study. Our recent study revealed that the increases in rice 
productivity contribute to the improvement of income 
via rice sales as well as human nutrition via increased 
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intake of energy and micronutrients of zinc, iron, and 
vitamin A [24].

Although enhancing rice productivity has such a 
welfare effect in this region, the majority of farmers do 
not use chemical fertilizers in lowland rice production 
[25]. The poorly developed fertilizer market and the 
inaccessibility of the fertilizer retailers, especially 
for those living in remote areas, appear to explain a 
substantial part of the low adoption rate of chemical 
fertilizer. However, the assumption that farmers are 
willing to use chemical fertilizers on their lowland rice 
plots if they have access to the fertilizer market and 
can afford to buy them may be misleading. According 
to the qualitative study by International Rice Research 
Institute (IRRI), farmers claimed negative effects of 
continued use of chemical fertilizer on soil quality, such 
as making topsoil shallower and harder[26].1 This belief, 
regardless of its origin, has led to skepticism about the 
overall benefit of chemical fertilizer use in lowland rice 
production. Therefore, encouraging farmers to change 
their practices requires not only improved market 
access, but also new and reliable information that can 

update their knowledge, countering long-standing beliefs 
and experiences. This context is crucial for our study 
as it highlights the necessity of scientific site-specific 
information.

Data collection and sampling procedure
Five villages in the Vakinankaratra region were purpo-
sively selected from two considerations. First, the five 
villages were chosen to represent the agroecological 
diversity of the region. Since the altitude of the highland 
region declines westward from 1500 m to 800 m, two vil-
lages were selected from relatively high-elevation areas, 
another two villages were selected from relatively low-
elevation areas, and another village was selected from the 
area between them (Fig. 1). Second, to assure farmers of 
access to the local fertilizer market, the five villages were 
on the national road running from the regional capital, 
Antsirabe (Fig. 1).

Each village consists of several smaller administrative 
units. Based on these units, two enumeration areas (EAs) 
were selected from each village. The EAs in a village 
have similar characteristics in terms of distance from the 
national road, population, and rice cultivation practices 
based on information collected in a preliminary field 
survey. Using the list of rice producers provided by the 

Fig. 1  Location of the study sites in the Vakinankaratra region.  Source: Authors creation based on data obtained from [27]

1  This IRRI’s  report is based on a survey conducted in 1988, which may 
seem outdated. However, the authors heard similar claims from several 
farmers during the fieldwork for this study.
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village leaders, we randomly selected 8 farmers who had 
grown rice in lowland plots during the 2018–19 rainy 
season.2 Before the intervention, the sample farmers were 
asked to list all the agricultural plots they had used in that 
season, and then to select the most important lowland 
rice plot (we refer to this plot as the “target plot”). We 
visited each of these target plots and measured their 
location and size using a GPS (Garmin eTrex 30 × model). 
In addition, surface soil at a depth of 0–15  cm was 
collected from three points in each plot to obtain soil 
composites. All the soil samples were subsequently sent 
to a national laboratory for soil Pox analysis according 
to Schwertmann (1964) [28]. Based on the results of 
this analysis, all the target plots were classified as either 
high-EE or low-EE plots. Note that the EE of “non-target” 
plots remained unknown for farmers with multiple rice 
plots.

Randomization
Figure  2 shows the assignment structure. A total num-
ber of 70 participants cultivated a total of 213 rice plots, 
including upland ones during the season of our interven-
tion (2019–20 rainy season). Randomization at the EA 
level was more appropriate than randomization at the 
household level to avoid information spillover between 
households within each EA. Because the two EAs in a 
village are geographically separated and farmers in the 

control EAs had no information about the selection of 
the treated EAs, information spillover across EAs was 
prevented. After randomization, 35 households were 
included in both the treatment and control groups, and 
the number of rice plots were 106 and 107, respectively. 
We provided all participants with nitrogen fertilizer 
(5 kg of urea), the size of the target plot as determined by 
GPS, and general advice on the timing and rates of urea 
application3 as common inputs. All of them were free 
of charge. Because we intended to test whether farmers 
would allocate nitrogen fertilizer based on EE informa-
tion, we provided them with urea for free to alleviate the 
financial constraints of obtaining fertilizer. During the 
distribution of the common inputs, participants were 
explicitly informed that there were no restrictions on the 
use of the urea; therefore, they could apply it to any crop 
on any plot, keep it, sell it, or even give it to others.

After the common inputs were distributed, only the 
farmers in the treatment group received additional 
information regarding the EE status coupled with the Pox 
value in the soil sample of the target plot (mg/kg), and the 
relative ranking of the Pox value among the participants 
in the same EA4 (see Figure A3). This intervention to 
the treated farmers removed the uncertainty of the yield 
response to urea application on the target plot, which 
should have facilitated them in deciding where to apply 
the nitrogen fertilizer more efficiently. Farmers in the 
control group had to decide how and where to use the 
distributed urea without knowing the EE status of their 
target plots.

The interviews for baseline data collection, soil 
sampling, and plot measurement were conducted in 
September 2019. In early November 2019, enumerators 
revisited the sample villages to distribute the common 
inputs to all the participants and the EE information 
generated based on soil sample analysis to the 
participants in the treatment group. The follow-up data 
collection was conducted in August 2020, approximately 
three months after the harvesting month of the year.

Fig. 2  Assignment structure. P denotes the amount of phosphorus 
in soil in mg/kg. Phosphorus was measured as oxalate-extractable 
phosphorus following Asai et al. (2020) [21]. Theta ( θ ) is the threshold 
value which defines the soil sample as either high expected 
effectiveness (EE) or low EE. Two different thresholds were used 
because soils in 4 out of 10 EAs were considered to be affected 
by a volcano

2  We ended up with having 70 households in total due to some dropouts 
during soil sampling and interview.

3  We recommended the rate of 1 kg of urea for 1 are of land (100 kg/ha). 
The recommended timings were 14 to 20 days after transplanting as basal 
fertilizer application, and 40 to 50 days after transplanting as top-dressing 
application. The actual paper distributed to all participants is presented in 
Appendix (see Figure A1, A2, and A3).
4  Although our main objective was to give information on the EE status, we 
also provided the farmers in the treatment group with the Pox value and its 
ranking among the participants in the same EA because farmers in the same 
EA tend to know each other’s plots, and the additional information might 
help them relate the results of soil examination to the actual situations they 
observed.
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Expected effectiveness of nitrogen fertilizer
Table 1 summarizes the variation in soil Pox according to 
EA. The mean Pox values varied considerably among the 
EAs, ranging from 36.13  mg/kg in EA10 to 547.53  mg/
kg in EA1. Relatively high Pox levels were observed in 
EA1–EA4 probably because of the volcanic soil.5 Based 
on the findings of Asai (2020) [21], Pox was used as 
the threshold to indicate the effectiveness of nitrogen 
fertilizer. Specifically, a Pox value of 100 mg/kg was used 
as the threshold (θ): the plot was considered to have 
high EE of nitrogen fertilizer use when Pox was above 
the threshold; the plot was considered to have low EE 
when Pox was below the threshold because phosphorus 
becomes the primary limiting factor for plant growth. 
Moreover, as phosphorus is abundant in volcanic soils 
but it in volcanic soils exists in the form unavailable 
for plants to observe, applying the same threshold of 
Pox value to these four EAs leads to overestimation of 
phosphorus availability in the plots. A public fertilizer 
application guideline for Japanese farmers suggests 
increasing the amount of phosphorus applied three times 
when soils are affected by volcanoes [29]. Therefore, 
following this recommendation, a Pox value of 300  mg/
kg was used as the threshold ( θ ) for evaluating the EE 
in these four EAs. For the remaining EAs, using these 
thresholds, both high- and low-EE plots were found in 7 
out of 10 EAs, indicating that the soil P deficiency status 
varies even within a village.

Econometric specification
The analysis used three specifications. The first model 
compares outcome variables between the target plots of 

the treated households and those of the control house-
holds. In our RCT setting, where whether a household 
received EE information was exogenously determined 
according to the random treatment assignment to each 
EA, the impact of intervention can be obtained by sim-
ple comparisons of mean values. However, it is still pos-
sible that the type of information the treated household 
received was correlated with observed and unobservable 
characteristics of the target plot and the household due 
to non-random selection of target plot from each house-
hold. Therefore, some control variables that explain char-
acteristics of the plot and the household were included. 
Furthermore, to address the unobservable plot-level 
characteristics, we employed an analysis of covariance 
(ANCOVA) model that includes the outcome variable in 
the pretreatment period, or lagged dependent variable, 
as one of the explanatory variables. The lagged depend-
ent variable is useful to deal with the potential omitted 
variable bias [30] and increases the power of the analysis, 
especially when using outcome variables that typically 
have high autocorrelations [31]. The specification is as 
follows:

where Yh2020 is an outcome variable that is either the total 
amount of nitrogen6 used or the rice yield in the target 
plot of household h in the rainy season of 2019–2020. The 
source of nitrogen can be either the distributed urea or 
any other nitrogen-containing chemical fertilizer pre-
pared by farmers by themselves. Thus, the variable of 
the total amount of nitrogen does not differentiate these 

(1)
Yh2020 = α0 + β1T

high
h + β2T

low
h + β3Yh2019 + β4′Controlsh + uh,

Table 1  Summary of variation in phosphorus amounts by EAs

Unit is mg/kg of dried soil. Phosphorus amount is measured as oxalate-extractable phosphorus. S.D. stands for standard deviation. Theta ( θ ) is the threshold value 
which defines the soil sample as either high expected effectiveness (EE) or low EE. Two different thresholds were used because soils in 4 out of 10 EAs were considered 
to be affected by a volcano

Villages EA Mean S.D. Min Max Volcanic soil θ

1 1 547.53 228.82 262.08 823.08 Yes 300

1 2 335.54 175.34 66.56 576.31 Yes 300

2 3 321.71 145.13 94.16 586.36 Yes 300

2 4 316.25 117.60 136.88 481.96 Yes 300

3 5 122.38 38.51 98.60 166.81 No 100

3 6 74.74 26.55 44.61 108.24 No 100

4 7 64.13 29.81 26.69 116.71 No 100

4 8 57.29 22.09 30.26 89.78 No 100

5 9 37.14 11.97 22.76 57.83 No 100

5 10 36.13 12.04 25.02 63.22 No 100

5  Nishigaki et  al. (2020) conducted a soil survey covering our study sites, 
and found sporadic volcanic soil in Betafo district where the four EAs are 
located [12].

6  Nitrogen application rate was calculated from the typical nutrient compo-
sition in each type of fertilizer product. It is 46% in the case of urea and 11% 
in the case of NPK fertilizers commonly available in the study area.
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sources. With regard to the treatment variables, our 
treatment would affect farmers’ decisions differently, 
depending on whether the information contained high 
or low EE. Therefore, two dummy variables indicating 
the type of information provided to the treated house-
hold were used instead of using one dummy variable for 
the treatment. Yh2019 is the outcome variable at the target 
plot in the previous rainy season. As additional control 
variables, plot size in ha, its squared value, household 
size, and age and years of education of the head of house-
hold were included.

Since EAs were the units of randomization, the 
standard errors were clustered at this level. However, the 
number of EAs is too small to apply the standard method 
of clustering standard errors. To address this problem, we 
employed wild cluster bootstrapping (WCB) to estimate 
standard errors [32].

The second model examined the impact of the 
intervention on fertilizer allocation within a household 
by comparing the target plot with non-target plots of 
a household. Thus, all the rice plots cultivated by the 
sample households, including upland rice plots, were 
used for this analysis. The model specification is as 
follows:

where Yih is an outcome variable for plot i of sample 
household h in the rainy season of 2019–2020. The out-
come variables included the nitrogen application rate 
in kg/ha, which was defined as in the previous model; 
the rice yield in kg/ha; and the rice income in each plot 
in MGA/ha.7 Income was calculated by subtracting the 
sum of expenses for seeds, hired labor, chemicals such as 
herbicides and pesticides, if used, and chemical fertiliz-
ers, including both the distributed urea and self-procured 
fertilizers, from the value of the rice paddy, which was 
calculated by multiplying the quantity of rice produced in 
kg by the average farmgate selling price of rice at the EA 
level.

In this specification, the target plots were further clas-
sified into four categories according to the two EEs of 
nitrogen fertilizer status and the two treatment statuses: 
target plots with a high EE of the treated households; 
those with a low EE of the treated households; those with 
a high EE of the control households; and those with a low 
EE of the control households. The corresponding binary 
dummy variables are denoted as Ihighih , I lowih ,NI

high
ih , and 

NIlowih  . It should be noted that in the case of households 
in the treatment group, the information about EE was 

(2)Yih = β1I
high
ih + β2I

low
ih + β3NI

high
ih + β4NI

low
ih + β5sizeih+β6size_sqih+β8upriceih +HHh + uih,

provided to the households before planting rice, whereas 
in the case of those in the control group, this informa-
tion was not provided even though the soil was sampled, 
and the Pox values were obtained in the laboratory. Thus, 
these four dummy variables in specification  (2) capture 
all possible patterns of the assignment status of target 
plots, setting non-target plots as the reference category. 
In this specification, β1 , β2 , β3 , and β4 are the parameters 
of interest. Each parameter indicates whether and how 
each type of assignment status affects the outcome of 
target plots compared with non-target plots of the same 
household. In general, we expect that β1 will be positive 
and significantly different from zero, because farmers are 
likely to follow the abovementioned information regard-
less of their subjective assessment of soil characteristics, 
unless they have very strong beliefs about the informa-
tion. On the other hand, β2 can be negative, but may not 
be significantly different from zero. The reason for the 
expected insignificant impact of the low EE information 
is that such information will not help farmers choose 
plots to use urea; hence, their decisions will not differ 
from those of control farmers who receive no informa-
tion. In contrast, β3 and β4 will not be significantly differ-
ent from zero.

Plot-level control variables were also included. sizeih 
and size_sqih represent the plot size in ha and its squared 
value for plot i of household h , respectively. upriceih is a 
dummy variable that takes the value of 1 if the plot is a 
rice plot in the upland. Given that upland rice cultivation 
is common in the study area [33], and many farmers in 
this dataset had rice plots both in lowlands and uplands, 
the non-target plots included both types of rice plots. 
Because the growing conditions differ between the two 
types of rice plots, this dummy variable aims to capture 
the effect of planting in uplands. HHh is the household 
fixed effect that captures unobserved effects of household 
h’s traits that commonly affect all the rice plots of 
household h. uih is the error term.

The third model was used to measure the household-
level impact of the intervention:

where Yh2020 is one of outcome variables that include the 
intensity of nitrogen application in kg/ha, the rice yield 
in kg/ha, rice income in MGA/ha. All of them are at the 
household level. The household-level rice yield was cal-
culated as the total rice quantity in kg produced divided 
by the total size of land devoted to rice cultivation in ha. 

(3)
Yh2020 = α0 + β1TREATMENTh + β2′HCh + β3′village + uh,

7  MGA stands for Madagascar Ariary, the local currency in Madagascar.
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TREATMENTh in Eq. (3) is a dummy variable that equals 
to 1 if household h is in the treatment group, meaning 
that those who received either high or low EE informa-
tion about their target plot, and 0 otherwise. Since our 
hypothesis is that the household-level outcome variables 
are positively affected by receiving information regardless 
of the type of information, this variable does not need to 
be decomposed, unlike in specification (1). HCh is the 
vector of household-level covariates: total size of rice plot 
in ha, its squared value, and age and years in education of 
the head of household. Village dummy variables ( village ) 
were also included to control for unobserved factors 
attributable to village characteristics. β1 is the parameter 
of interest, α0 is the constant term, and uh is the error 
term.

Because we did not collect baseline data on the 
household-level outcome variables, the ANCOVA 
model could not be applied to this household-level 
analysis. However, in the case of rice yield and fertilizer 
application, which are considered to have relatively high 
autocorrelation, we used the previous year’s values in the 
target plot to control for preintervention levels.8 As in 
the specification (1), we employed WCB.

Results and discussion
Characteristics of participating households
Table 2 provides descriptive statistics for the participat-
ing households. In addition to the mean values for all 
participating households in the first column, those of the 
control and treatment groups are presented in the sec-
ond and third columns, respectively. In terms of EE sta-
tus, 22 out of the total of 70 target plots, or 31.4%, were 
classified as high-EE plots, meaning that an increase in 
nitrogen fertilizer would result in a greater rice yield in 
these plots. A household typically consisted of 5 people 

and cultivated rice on an average area of 0.49  ha. The 
number of rice plots per household was on average 3.5, of 
which one was the target plot with a mean size of 0.15 ha. 
The description indicates that participants were typically 
small-scale but had multiple choices of plots for fertilizer 
allocation. It is also implied that the amount of the dis-
tributed urea was still not sufficient to cover the average 
size of the target plot. Thus, most farmers were expected 
to add urea or other nitrogen-containing fertilizer in 
order to thoroughly follow the recommendation. Since 
all the EAs are located along the national road by design 
of this study, farmers could procure additional fertilizer 
as needed without significant variability in accessibility. 
The last column in Table 2 shows that there were no sys-
tematic differences between the treatment and control 
groups with respect to these variables.

Descriptive statistics of plot‑level outcomes
Panel A of Table  3 shows the descriptive statistics of 
rice yield and fertilizer use in the target plots. Before the 
intervention, urea was applied in merely 17% of the tar-
get plots. After the intervention, the percentage of plots 
where farmers applied urea increased to 61%. However, 
the average rice yield across all the target plots did not 
change much: 4384.31 kg/ha before the intervention and 
4487.16 kg/ha after the intervention. After the interven-
tion, urea was applied to 70% of the target plots in the 
treatment group when the plots were categorized as hav-
ing high EE while the share was 48% when the plots were 
categorized as having low EE (Table  3). The mean urea 
application rate in the target plot of the treated house-
holds whose target plot was categorized as high EE was 
167.86 kg/ha. This rate was greater than the recommen-
dation provided regarding application rate, 100  kg of 
urea per ha. In addition, this rate was greater than the 
mean application rate in the non-target plots of the same 
group (see urea application rate in Panel B in the same 

Table 2  Results of t-test for variables related to household characteristics.  Source: Authors calculation from the dataset

MGA is local currency

Variables Unit All Control Treatment Pr(T > t)

Expected effectiveness (= 1 if High) % 31.42 34.29 28.57 0.613

Household size people 5.21 5.29 5.14 0.746

Sex of household head (= 1 if male) % 92.86 94.29 91.43 0.643

Age of household head years old 46.57 46.03 47.11 0.711

Education level of household head years 6.00 6.31 5.69 0.416

Total size of rice plots hectare 0.53 0.45 0.61 0.276

The number of rice plots number 3.49 3.54 3.43 0.761

Size of the target rice plot ha 0.15 0.14 0.17 0.384

Value of asset per capita 103 MGA 633.39 628.74 638.03 0.961

Observations 70 35 35 -

8  In the case of rice income, the model was estimated without data prior to 
the intervention because they have low autocorrelation.
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column). These differences seem to indicate that, on 
average, households who received EE information about 
their target plot adjusted their application rate and allo-
cation although the adjustment was not necessarily accu-
rate. We expected the proportion of urea-applied plots 
in the control group to be between the shares in the two 
treatment subgroups. Although 69% was in between, this 
percentage was very close to that of the high-EE group. 
The mean nitrogen application rate increased in the high-
EE target plots from 54.02 kg/ha to 91.53 kg/ha after the 
intervention while it decreased in the low EE target plots 
of the treatment group.

These figures may seem perplexing at first glance. There 
was no statistically significant difference in the mean 
rice yield between before and after the intervention. For 
the treated target plots with high EE it was even slightly 
less after the intervention. However, these values do 
not mean the absence of the impact of the intervention 
because other factors such as plot size and household 
characteristics are not controlled for in the mean 
comparison. Therefore, the impact of the intervention 
should be estimated using econometric models that 
control for these covariates.

Panel B of Table 3 summarizes the same set of variables 
in the non-target plots after the intervention. The means 
of all these variables were lower than those in the target 
plots, i.e., the mean rice yield was 3557.69 kg/ha, the pro-
portions of plots where urea was used and any nitrogen-
containing chemical fertilizer was used were 48% and 
58%, respectively, and the mean application rates were 
53.62 for urea and 22.32  kg/ha for nitrogen. Moreover, 
the difference in the proportion of plots where urea was 
used between the target and non-target plots was the 
largest for the treated households that received high EE 
information.

Impact of intervention
Table 4 reports the regression results of Specification (1). 
The first row shows the impact of providing high EE infor-
mation: the high EE information significantly increased 
the amount of nitrogen applied to the target plots by 
34.09  kg/ha when the outcome variable in the season 
before the intervention, the plot-level covariates, and the 
village fixed effects were included in the model as shown 
in column (2). The high EE information encouraged farm-
ers to use nitrogen fertilizer. Consequently, the rice yield 

Table 3  Descriptive statistics of plot-level variables by assignment status.  Source: Authors

Standard deviations for continuous variables are shown in parentheses. Nitrogen use and nitrogen application rate are separately presented from urea because 
sources of nitrogen include not only urea, but also other fertilizer products. The urea application rate and nitrogen application rate are the mean values only among 
plots where a positive amount of urea and nitrogen were applied, respectively

Variables Unit All Treated HHs
(EE = High)

Treated HHs
(EE = Low)

Control HHs

Panel A: target plots

 Before intervention (2018–19 season)

  Rice yield kg/ha 4384.31 (2336.03) 6518.91 (2285.41) 3444.52 (2467.45) 4445.70 (1844.16)

  Urea use (0/1) 0.17 0.40 0.12 0.14

  Urea application rate kg/ha 159.78 (153.40) 123.05 (58.54) 152.44 (1.97) 193.57 (243.56)

  Nitrogen use (0/1) 0.20 0.50 0.12 0.17

  Nitrogen application rate kg/ha 68.34 (68.07) 54.02 (32.38) 74.18 (7.91) 77.35 (104.22)

 After intervention (2019–20 season)

  Rice yield kg/ha 4487.16 (2632.74) 6434.99 (3683.90) 3646.50 (2330.20) 4531.11 (2236.91)

  Urea use (0/1) 0.61 0.70 0.48 0.69

  Urea application rate kg/ha 96.89 (124.00) 167.86 (93.61) 55.10 (49.35) 97.08 (148.94)

  Nitrogen use (0/1) 0.61 0.70 0.48 0.69

  Nitrogen application rate kg/ha 47.05 (60.31) 91.53 (57.48) 25.43 (22.63) 44.90 (68.44)

  Number of plots 70 10 25 35

Panel B: non-target plots

 After intervention (2019–20 season)

  Rice yield kg/ha 3557.69 (2567.02) 4972.64 (2394.60) 3114.51 (2420.42) 3607.60 (2632.46)

  Urea use (0/1) 0.48 0.47 0.43 0.53

  Urea application rate kg/ha 53.62 (42.47) 49.27 (34.84) 39.73 (33.37) 63.19 (46.93)

  Nitrogen use (0/1) 0.58 0.47 0.55 0.62

  Nitrogen application rate kg/ha 22.32 (19.83) 27.71 (17.31) 15.54 (15.27) 26.16 (21.93)

  Number of plots 143 15 56 72



Page 9 of 14Ozaki et al. Agriculture & Food Security           (2024) 13:45 	

in the target plot significantly increased by 1082.50  kg/
ha for those who received high EE information compared 
with that of the control group as shown in column (4). 
Note that three households were excluded because they 
experienced production failure in the target plots before 
the flowering stage of rice plants due to drought for the 
two of those and an unknown non-weather related fac-
tor for the other one. Since these events affected rice 
yield after the timing of nitrogen fertilizer application, the 
inclusion of these households may mask the impact of the 
providing EE information on rice yield via change in fer-
tilizer use. The second row shows that receiving low EE 
information did not result in statistically significant dif-
ferences in the nitrogen fertilizer use while the coefficient 
was negative as expected. Consistently with insignificant 
effect on the nitrogen use, the rice yield in the target plot 
of households that received low EE information was not 
different from that of the control group.

Table 5 presents the results of specification (2), which 
compares the outcome variables between the target plot 
and non-target plots in the same households that had 
multiple rice plots in the intervention season. The first 
four rows correspond to the four treatment categories 
of the target plot. The results showed that the amount of 
nitrogen fertilizer applied in the target plot was 31.89 kg/
ha greater than that applied in the non-target plot only 
when the household received high EE information 

(column (1)). The difference in rice yields between the 
target plot and non-target plots in the same households 
was 1318.03  kg/ha on average after controlling for the 
case of upland plots and unobserved household char-
acteristics as shown in column (2). By receiving high EE 
information, farmers significantly increased their rice 
income from the target plots compared with that from 
their non-target plots by 755,19 MGA/ha.

The second row of Table  5 presents the effect of low 
EE information on the target plots. As expected, there 
were no significant differences between the target and 
non-target plots in terms of nitrogen application or rice 
yield. This insignificant effect is as expected because the 
low EE information does not indicate to which plots a 
farmer should apply urea or nitrogen, unlike the high EE 
information. The coefficients in the third and fourth rows 
were insignificant, suggesting that, without EE informa-
tion, participants in the control group allocated fertilizer 
evenly across rice plots within a household, and conse-
quently there were no differences in outcomes between 
target and non-target plots.9 The results imply that 

Table 4  Impact of soil quality information on nitrogen fertilizer in target plots

a The amount of nitrogen is calculated from any type of chemical fertilizer products that contain nitrogen. For calculation, urea (N46–P0–K0) and NPK (N11–P22–K16) 
were used as major compositions of nutrients of each fertilizer product based on our field observations

Robust standard errors clustered at EA level are in parentheses
*** , ** and * indicate p < 0.01, p < 0.05 and p < 0.01 after wild bootstrapping, respectively

Dependent variables Nitrogen quantitya

(kg/ha)
Rice yield
(kg/ha)

(1) (2) (3) (4)

Treatment variables

 Treatment (high EE) (0/1) 49.87 (20.14) 34.09 (22.76)** 3119.95 (563.34)** 1082.50 (401.93)*

 Treatment (low EE) (0/1) −9.12 (10.89) −6.42 (5.59) −735.52 (464.90) 143.75 (289.29)

Plot-level covariates

 Nitrogen quantity in the previous season (kg/ha)a 0.48 (0.31)

 Rice yield in the previous season (kg/ha) 0.64 (0.15)***

 Plot size (ha) −28.18 (29.80) −5946.96 (2908.25)

 Plot size squared 13.40 (13.02) −877.88 (979.56)

 Age of the head of household −0.04 (0.23) 31.60 (19.45)

 Years of education of the head of household 0.60 (0.84) 71.23 (63.51)

 Constant 21.32 (8.27) 19.92 (9.45) 4382.02 (384.13) 640.48 (938.90)

 Village fixed effect No Yes No Yes

 Observations 68 68 65 65

 (Adj.) R-squared 0.29 0.50 0.18 0.47

 F-value 4.55 15.12 18.15 142.48

9  In the fourth row of the second column, the result indicated that the rice 
yield in the target plot of the control households whose target plot had low 
EE status was higher than that in their non-target plots at the 10% signifi-
cance level. However, since the impact on the nitrogen use was insignificant, 
this positive coefficient on rice yield should be due to some other factors 
instead of the impact of our intervention.
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farmers do not know the effectiveness of nitrogen in their 
plots, and providing this information helps them opti-
mize their decisions.

Table 6 shows the impact of the intervention on house-
hold-level outcomes using specification (3). The first col-
umn presents the results of estimating the impact of the 
treatment on nitrogen application rates. Columns (2) and 
(3) show whether and to what extent rice yields and rice 
income at the household level increased as a result of the 
intervention, regardless of the type of information. The 
insignificant coefficient in column (1) indicates that the 
intervention did not increase nitrogen application rates 
at the household level. It should be noted that all the 
households regardless of the treatment status received 
5  kg of urea at the beginning of the cropping season. 
However, the intervention increased rice productivity at 
the household level by 613.94  kg/ha (column (2)). Con-
sequently, rice income at household level was 433,760 
MGA/ha higher for the treated households (column (3)). 
These results suggest that information provision leads 
farmers to achieve higher rice productivity and income 
not by increasing the amount of fertilizer, but by optimiz-
ing the allocation of fertilizer within the household.

Cost–benefit analysis of the intervention
To explore the financial viability of this experiment or 
a similar attempt in the future, Table  7 presents a cost 

structure based on the experience of this study. The cost 
of hiring an enumerator to sample soils was approxi-
mately 70,000 MGA/day, which included accommoda-
tions and other necessary items for the activity in the 
field. Based on the experience of this study, an enumera-
tor could collect soil samples from an average of 3 to 4 
plots per day, although various factors affected the effi-
ciency of the work. Thus, the cost of soil sampling was 
approximately 20,000 MGA per plot. These samples 
were then taken to the Laboratoire de Radio-Isotopes, 
the national agricultural research institute located in the 
capital city of Madagascar. In this experiment, 70 soil 
samples were tested per day. Assuming that wage rate of 
a laboratory technician is the same as that of an enumer-
ator, the cost of testing one soil sample is 1,000 MGA.10 
In addition, 5 kg of urea was provided free of charge in 
this experiment. At the time of the intervention, the price 
of urea was 1,800 MGA/kg, so the cost of 5 kg was 9000 
MGA. It cost 70,000 MGA/day to rehire the enumerator 
to revisit the participants to deliver the urea and the soil 
test result. One enumerator could visit 8 households per 
day, so the cost was 8,750 MGA per participant. The total 

Table 5  Impact of soil quality information on allocation of fertilizers within a household

a The amount of nitrogen is calculated from any type of chemical fertilizer products that contain nitrogen. For calculation, urea (N46–P0–K0) and NPK (N11–P22–K16) 
were used as major compositions of nutrients of each fertilizer product based on our field observations
b The number of households is 55, which is different from the total number of participating households because 10 households that had only one rice plot and 5 
households one of whose plots had extreme values for outcome variables were excluded

Robust standard errors clustered at household level are in parentheses. ***, ** and * indicate p < 0.01, p < 0.05 and p < 0.01, respectively

Dependent variables independent variables Nitrogen quantitya (kg/ha) Rice yield (kg/ha) Income (103MGA/ha)
(1) (2) (3)

Treatment variables

 Treatment (high EE) (0/1) 31.89 (13.02)** 1318.03 (602.75)** 755.19 (422.97)*

 Treatment (low EE) (0/1) 3.71 (3.61) 6.56
(451.60)

−30.87 (409.99)

 Control (high EE) (0/1) 0.88 (6.87) −788.56 (621.90) −323.67 (474.76)

 Control (low EE) (0/1) 1.10 (2.65) 916.54 (519.62)* 603.00 (428.51)

Plot-level covariates

 Plot size (ha) −20.67 (10.74)* −3897.13 (1647.50)** −1621.34 (1034.22)

 Plot size squared 13.07 (7.45)* 1389.65 (1095.94) 351.45 (663.27)

 Upland rice plot (0/1) 9.57 (2.63)*** −1089.03 (408.86)*** −982.76 (372.88)**

 Household fixed effect Yes Yes Yes

 Constant 14.75 (1.53) 4428.87 (279.91) 2360.48 (220.95)

 Observations 181 181 181

 Number of householdsb 55 55 55

 (Adj.) R-squared 0.70 0.52 0.45

 F-value 3.14 5.60 4.72

10  No chemical material was used in the analysis. We have not taken into 
account the depreciation of the laboratory equipment because it has mul-
tiple uses, and it is not realistic to accurately calculate the portion of depre-
ciation that is attributable to this work.
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cost was 38,750 MGA for one plot per participant, which 
is equivalent to US$ 10.23.

As shown in Table 6, the average rice income per ha of 
the treated households was 433,760 MGA higher than 
that of the control households. Since the mean total rice 
plot size for a household was 0.49  ha, a typical house-
hold will receive 212,542 MGA or US$ 56.11 of benefit 
from the soil information of one of the household plots. 
This expected benefit was substantially higher than the 
implementation costs and would persist so even with the 
recent increase in international fertilizer prices.

It should be noted that the cost calculation does not 
include the cost of transporting a soil sample to the 
research institute, as the cost depends largely on the 
mode of transportation and the distance between the 
study site and the location of the institute. This may be 
a concern especially if a similar intervention is carried 
out on a larger scale. In addition, implementing similar 
interventions for farmers in remote areas may be more 
difficult because, for a developing country, the num-
ber of research institutes that can conduct soil analysis 
is limited and these institutes are usually located in or 

Table 6  Impact of intervention on household-level variables

a The amount of nitrogen is imputed from any type of chemical fertilizer products that contain nitrogen. For calculation, urea (N46–P0–K0) and NPK (N11–P22–
K16) were used as major compositions of nutrients of each fertilizer product based on our field observations. The number of observations is 65 because the same 
households used in the column 4 of Table 4 were used here. Robust standard errors clustered at EA level before wild bootstrapping are shown in parentheses

The significance level is obtained by wild bootstrapping and indicated by ***, ** and *, which imply p < 0.01, p < 0.05 and p < 0.1, respectively

Dependent variables Nitrogena application rate 
(kg/ha)

Rice yield (kg/ha) Rice income (103MGA/ha)

(1) (2) (3)

Treatment (0/1) 9.2 (3.97) 613.94 (246.30)* 433.76
(177.39)*

Control variables

 Nitrogen application in target plot in the previous 
year

0.1 (0.09)

 Yield of target plot in the previous year 0.47 (0.05)***

 Total size of rice plot (ha) −25.1(14.30)** −2593.06 (979.98)** −1976.32 (726.99)**

 Total size of rice plot squared 5.26 (3.34) 445.99 (232.99) 334.71 (157.76)

 Age of household head (years old) −0.08 (0.16) 11.07 (9.94) 19.60 (21.21)

 Years of education of household head 1.00 (0.48)* 117.06 (42.81)** 80.15 (63.82)

 Village fixed effect Yes Yes Yes

 Constant 26.46 (5.39) 1486.41 (520.25) 1079.12 (1008.60)

 (Adj.) R-square 0.43 0.55 0.15

 Observations 65 65 65

 F-value 50.52 25.12 8.88

Table 7  Cost and benefit analysis of the intervention.  Source: Author’s experience in the experiment

a These values were obtained from experience of the present study
b This value was obtained by multiplying the mean size of the total rice plot (0.49 ha) by the coefficients of the treatment variable in column (3) of Table 6
c Exchange rate as of 2020 (1USD = 3787.75MGA) was obtained from the World Bank website (https://​data.​world​bank.​org/​indic​ator/​PA.​NUS.​FCRF?​locat​ions=​MG&​
view=​chart.)

Items Unit Price Rates Costs per householda 
(MGA)

Costs per 
household c 
(USD)

A. Hiring an enumerator for soil sampling 70,000 MGA/day 3–4 plots/day 20,000 5.28

B. Wage for lab staff for soil examination 70,000 MGA/day 70 samples/day 1000 0.26

C. Hiring an enumerator for revisiting 70,000 MGA/day 8 households/day 8750 2.31

D. Urea 1,800 MGA/kg 5 kg/households 9000 2.38

Total cost per household (A. + B. + C. + D.) 38750 10.23

Total benefit 212542b 56.11

https://data.worldbank.org/indicator/PA.NUS.FCRF?locations=MG&view=chart
https://data.worldbank.org/indicator/PA.NUS.FCRF?locations=MG&view=chart
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near urban areas. However, if the demand for soil testing 
increases, the number of soil samples will increase, and 
test laboratories can be established in many places in the 
country. Therefore, the transportation cost per soil sam-
ple will decrease.

Partial budget analysis
In addition, to investigate whether nitrogen application 
is an economically attractive option for farmers whose 
plot is high EE, the partial budget analysis was performed 
according to [34]. Table  8 compares a partial budget 
for nitrogen application in plots with high EE. In a 
partial budget analysis, the net benefits are calculated 
by subtracting the costs from the gross field benefits. 
Costs include only those that vary due to shifting from 
one option to the other, which in the context of this 
study were the cost of nitrogen and labor to apply urea.11 
Calculations of these costs are shown in Table  A1. The 
gross field benefits are obtained by multiplying the 
average yield by the field price of the output, farmgate 
rice selling price in the context of this study.

The partial budget analysis shows that the net 
benefits of nitrogen application were higher than 
those of no nitrogen application in high-EE plots. The 
additional gross field benefit was 1,127,280 MGA/ha 
(4,935,266MGA—3,807,986MGA), while the increase 
in the total variable costs was 257,084 MGA per ha. 
Thus, for farmers whose plot was high-EE but did not 
receive nitrogen fertilizer, applying nitrogen at the 
average application rate of those who applied it would 
result in an additional net benefit of 870,196 MGA/ha. 
Furthermore, the marginal rate of return for nitrogen 
application was calculated by dividing the net benefit 
gain of 870,196 MGA/ha by the additional cost of 
257,084MGA/ha, and that was 3.38. These results imply 
that nitrogen application is an economically attractive 
option in high-EE plot and highlight the importance 
of an intervention to make farmers aware of their soil 
characteristics.

Limitations of the study
The limitations of this study are as follows. First, the 
experiment was conducted on a relatively small scale; 
hence, the number of observations was not so large. Con-
sidering the criticism of the external validity of many 
RCT studies, in addition to the small sample size, the 
generalization of the results of this research requires spe-
cial caution. Similar interventions on a larger scale will be 

important to confirm the main findings of this study. Sec-
ond, this study examined the impact of information only 
during the 2019–2020 season, which began immediately 
after our intervention. It would be useful to have addi-
tional data for subsequent seasons to see if the impact is 
sustained without the provision of free fertilizer.

Conclusion and policy implications
While the necessity of site-specific fertilizer management 
advice is widely recognized, the specific type of 
site-specific information can improve soil fertility 
management and increase crop yield, without resorting 
costly comprehensive soil analysis, was previously 
uncertain. To address this, we demonstrated the 
effectiveness of a unique binary indicator of fertilizer 
effectiveness based on the Pox value of the soil. This 
proposition has been firmly supported by agronomic 
evidence that P deficiency in soils is a primary limiting 
factor for rice response to nitrogen inputs, the main 
fertilizer source, in SSA provided that other observable 
stresses such as drought, flooding, weed, pests, and 
diseases are absent.

A randomized controlled trial in Madagascar showed 
that simple binary information contributed to effective 
use of nitrogen fertilizer. Farmers informed about the 
high EE status of their target plot applied significantly 
more nitrogen to these plots compared to those who 
did not receive EE information or plots with no infor-
mation. Moreover, providing EE information helped 

Table 8  A partial budget of nitrogen application in a plot with 
high EE

a The average yield for each column was obtained by taking average of yields of 
high-EE plots according to whether urea was used regardless of the treatment 
assignment
b In the manual of partial budget analysis provided by [34], adjusted yield 
instead of average yield is used to calculate gross field benefits. However, we do 
not need adjusted yield because our data come from randomly selected farmers’ 
plots instead of representative farmers in the study site
c To obtain this value, the farmgate selling price, 854MGA/kg, was used as the 
mean selling price among farmers whose plot was high EE
d Cost for transportation was not considered because all EAs are located along 
the national road and therefore access to fertilizer retailers did not considerably 
differ among participants

Without N 
application

With N application

Average yield (kg/ha)a 4459 5779

Gross field benefits (MGA/ha)b,c 3,807,986 4,935,266

Cost of nitrogen (MGA/ha)d 0 248,084

Cost of labor to nitrogen 
application (MGA/ha)

0 9,000

Total variable costs (MGA/ha) 0 257,084

Net benefit (MGA/ha) 3,807,986 4,678,182

11  Additional cost of seeds may have to be considered if farmers use seeds of 
different rice cultivar which they consider more fertilizer responsive when 
they choose. However, it is reported that farmers do not care about rice cul-
tivar when they use fertilizers [27], and thus we did not include the cost of 
seeds in this analysis.
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optimize the allocation of available fertilizers, and 
increasing yield and rice income at the household level.

Given the general need to increase nitrogen use in 
rice production in SSA, this study makes an important 
contribution to the discussion by showing that even 
simple information can enhance the effectiveness of 
conventional fertilizer policies such as subsidy programs, 
credit, and fertilizer use training for  promoting fertilizer 
use. Additionally, the cost–benefit analyses showed that 
our approach is cost effective.

The use of a simple indicator of nitrogen effectiveness 
is unique to this study because previous studies have 
used many soil properties to determine the type and 
amount of mineral fertilizer to be applied in each plot. 
Nevertheless, we do not intend to oversimplify reality, 
and we agree with the comments of Burke et al. (2019) 
[35] on Marenya and Barrett (2009) [36] that crop yield 
response is influenced by a complex soil structure. 
In this regard, future studies that examine whether 
complex information consisting of multiple soil 
properties leads to greater or lesser impacts on farmers’ 
practices than the simple information based on a single 
soil property used in this study, taking into account the 
costs of information generation, will be useful for both 
researchers and policy makers.
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