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Abstract 

Background Proximity to food sources is one of the quantifiable factors measurable across space impacting diet-
related health outcomes. Contemporary research has coined the terms ‘food desert’ and ‘food swamp’, sometimes 
combined with a poverty component, to highlight disproportionate access to healthy and unhealthy food sources. 
However, there are various ways to measure this proximity—i.e., food availability in this research. Dollar stores such 
as Dollar General, Family Dollar, and Dollar Tree are one emerging facet of the food environment that provides healthy 
and unhealthy food options yet have not fully been studied. With more ways to easily measure food availability 
within the confines of a GIS, this paper proposes a new raster-based Point Density metric to measure the availability 
of these Dollar stores. In this study, this raster-based metric was calculated for a 6-county region in central North 
Carolina and compared to six other availability metrics utilized in food security research. A novel Python-based tool 
to compute the Jaccard Index between these various availability metrics and a matrix to compare these pairwise Jac-
card Index calculations was created for this raster-based metric, which is very easy to derive.

Results Using a pairwise Jaccard Index summarized and then averaged in a correlation table, the Point Density 
measure rated the highest (.65) when compared to 6 other popular vector-based techniques. Our results showed 
the density metric performed statistically better than Euclidean distance, drive-time, density, and point-in-polygon 
vector metrics when measuring availability for Dollar stores in Central North Carolina.

Conclusions Results reinforce the efficacy of this easy-to-compute metric comparable to vector-based counterparts 
that require more robust network and/or geoprocessing calculations. Results quantitatively evaluate food availability 
with an eventual goal of dictating local, regional, and even state-level policy that critically and holistically consider this 
metric as powerful and convenient metric that can be easily calculated by the lay GIS user and understood by anyone.
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Introduction
Food security is defined as the state where people have 
physical access to safe and affordable food, which allows 
for a healthy and active life. This can mean many differ-
ent things at various spatial and temporal scales. How-
ever, according to the Food and Agriculture Organization 
(FAO), food security comprises the pillars of food avail-
ability, food access, and food utilization with the ultimate 
goal of food stability. Food availability represents the 
temporal, physical, and geographical proximity of healthy 
food to those who need it, while access accounts for 
those who are physically able to procure available food in 
various ways, such as individualized vehicular transpor-
tation, walking, public transportation, rideshares, etc. In 
some cases, food availability and access are used inter-
changeably; however, in this research, food availability is 
a subset of food access. As a result, food access depends 
upon availability—highly accessible foods are also highly 
available, but highly available foods may not be accessible 
to some people.

Quantitative methods elucidate relationships between 
food availability, food access, and food utilization. They 
help, though not fully explain it using metrics such as 
proximity, race/ethnicity, poverty status, and access 
to transportation, among other things. A Geographic 
Information System (GIS) is a powerful tool to examine 
quantitative spatial relationships between and among the 
various agents within the food environment at a local or 
global scale. These agents include costs of food, source 
locations (where people are traveling from), and destina-
tions (where people are traveling to) to procure all forms 
of food, both healthy and unhealthy, as well as socio-eco-
nomic-health-environmental variables stored within enu-
meration units. As a result, the application of GIS to food 
security studies is pervasive among research today [3, 6, 
7, 9, 22].

There is a rich body of knowledge on the various ways 
to measure food availability within the confines of a 

GIS. This includes count (number of grocery stores per 
ZIP code, for example), distance (distance to the near-
est grocery store), drive-time (drive-time to the nearest 
grocery store), and density (number of grocery stores 
per square mile or population per ZIP code) metrics. 
Furthermore, unitless metrics such as ratios utilized 
by the RFEI (Retail Food Environment Index) meas-
ure the ratio of unhealthy food outlets versus healthy 
food outlets by enumeration unit. An accompanying 
mRFEI (Modified Retail Food Environment Index) rep-
resents the percentage of stores within an enumeration 
unit that are classified as healthy, further articulating 
the many ways in which availability can be adequately 
measured. There are many permutations of these met-
rics as well, which include buffers (number of grocery 
stores within a distance of a ZIP code, which can also 
be normalized by population and area), application of 
distance (Euclidean, Manhattan, or driving) which are 
increasingly more difficult (time and resource-wise) to 
compute, aggregation of distance (how many source and 
destination points are being used) and more complex 
ratio calculations above and beyond healthy/unhealthy 
food as per the RFEI and mRFEI.

Dollar stores, considered in this study to be Dollar 
General, Dollar Tree, and Family Dollar franchises in 
this study, have gained a foothold in the food environ-
ment. Not explicitly represented as supermarket stores 
in CAB (Commercially Available Business) databases, 
they appear in areas overlooked by major supermarkets 
and grocery stores. Many of these dollar stores provide 
staples such as vegetables, fruits, milk, and eggs, which 
indicate supermarkets, grocery stores, and a healthy food 
environment. Between 2009 and 2022, the number of 
dollar stores has doubled in just the study area alone (45 
in 2009, 77 in 2016, and 93 in 2022) (Fig. 1).

While these food availability metrics have obvious util-
ity, there is little agreement on which metric best aligns 
with other food availability metrics. Although there has 

Fig. 1 Healthy and fresh food offerings in Dollar General store within study area [21]
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been ongoing discussion regarding the absence of a uni-
versally agreed-upon approach/metric for assessing food 
insecurity or food environment exposure, research-
ers have commonly employed methods such as ratio 
and proportion indicators [25, 28, 30] or, Geographic 
Information System (GIS) techniques [6, 14, 16, 22–24], 
qualitative methods [13], and more recently real-time 
information [26]. Furthermore, little work has explored 
using raster-based density techniques to measure food 
availability versus their vector-GIS counterparts. In this 
study, on the backdrop of measuring the availability of 
dollar stores and using the working hypothesis that a 
raster-based point density metric to measure food avail-
ability is comparable to traditional vector-based counter-
parts, we will explore:

• The development of a model to utilize point den-
sity calculations to measure the availability of dollar 
stores in Central North Carolina at the pixel scale 
and grouped within census block groups (using the 
Point Density spatial analyst tool).

• The use of this density metric to delineate, assess, and 
evaluate the most available and least available block 
groups on the backdrop of socio-economic variables 
within the study area.

• The comparison of this density-based metric against 
other traditionally used metrics using statistical tech-
niques (using the Jaccard Index tool).

Literature review
Food availability is largely geographical and can be meas-
ured using a GIS (Geographic Information System), 
which helps create, analyze, and render spatially related 
information in the digital environment. While stud-
ies have explored the physical factors such as climate 
that impact food security at a very low scale [29, 31], as 
applied to this study, GIS is used to measure food avail-
ability using various methods at much higher scales. 
These metrics are measured within various polygonal 
units of various sizes. Counties, subdivisions of states, are 
typically too coarse of a scale to express local-level food 
security which this research attempts to do. Finer units 
include census tracts, subdivisions of counties and census 
block groups, subdivisions of census tracts. Other units 
include ZIP (Zone Improvement Plan) codes that are not 
part of the census. They are smaller than counties, but 
larger than census tracts. However, they overlap counties 
which census units do not do.

One such method to measure availability is Euclid-
ean distance, which measures the straight-line distance 
between a source or the center of an enumeration unit 
(such as a census tract or block group) and the nearest 
food source (such as a grocery store). This approach has 

been used in several studies, including those by Misiaszek 
et  al. [17], the Economic Research Service (2015), Zenk 
et al. [33], Lewis et al. [15], and Morris et al. [19], all of 
which utilized straight-line distance within a GIS to 
measure food availability. The enumeration units in these 
analyses vary, where Misiaszek et al. [17], Zenk et al. [33] 
(2005), and the Economic Research Service (2015) utilize 
census tracts, Chenarides et  al. [9] utilize block groups, 
Lewis et al. [15] implement the ZIP code, and the USDA 
Food Access Atlas (2019) uses the centroid of 500-m 
cells/grids canvassed across a study area.

However, while Euclidean distance is easy to calcu-
late, it does not accurately represent the practical food 
environment since people do not travel in straight lines 
to procure food. As a result, more resource-intensive 
network calculations can derive driving and walking 
distance/time given sources (places traveling from), 
destinations (stores to travel towards), and a network 
of roads or sidewalks with impedances (speed limits or 
travel time) provide a better representation of the prac-
tical food environment. For instance, Pearson et al. [27] 
and later Morland and Evenson [18] utilize this network 
distance between individual addresses and food loca-
tions, while works by Algert et  al. [1], Mulrooney et  al. 
[22] and Mulangu and Clark [20] utilize drive-time met-
rics. Cervigni et al. [7] measure walk-time and isochrones 
using these networking tools.

Despite the benefits of network calculations, they also 
have their challenges, particularly regarding the selec-
tion of sources and destinations. While it is easy to define 
healthy food outlets as destinations, the use of sources 
from which trips originate can significantly impact the 
results. Using multiple sources in a GIS can be expensive 
in terms of time and resources. For instance, in a study 
by Mulrooney et  al. [22], more than 177,000 residential 
addresses were used as sources to travel to 193 potential 
destinations in North Carolina. Using Dijkstra’s Short-
est Path First (SPF) algorithm and a road network with 
over 98,000 vertices, calculating just one path requires 
between 177,000 and 9 billion calculations. Various sam-
pling methods exist to approximate sources, including 
using the population-weighted block group centroid, as 
demonstrated by Berke and Shi [4] and the USDA Food 
Access Atlas [10], as well as random points [24] and ran-
dom point distributions stratified by area and population 
[12]. A comparison of 291 population-weighted block 
groups with more than 177,000 individual addresses 
found both drive time and drive distance were within 
acceptable tolerances for population-weighted block 
group centroids using both tests of similarity and dissim-
ilarity via t-tests and tests of equivalence.

In addition to distance-based measures, basic counts 
for a particular enumeration unit can be calculated 
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within the confines of a GIS using the Spatial Join func-
tionality, which counts the number of food sources rep-
resented as points within an enumeration unit. These 
count values can be compared to other count values or 
further analyzed using buffers or normalized values. 
Count values normalized by population, area or com-
bining both techniques with buffers can provide a more 
granular analysis. For instance, Brown-Amilian [6] found 
census tracts containing fewer Dollar stores have higher 
education attainment levels, less racial/ethnic diversity, 
and more income. Thornton et al. [30] built upon this by 
looking at the number of destinations within a distance 
of an enumeration unit, providing a more detailed analy-
sis. Block et al. [5] explored the density of fast-food res-
taurants within a specific distance of a census tract when 
normalized by the area of the census tract.

Regardless of the measure, various limitations when 
utilizing GIS to assess the food environment exist. They 
include (1) the use of centroids as appropriate proxies 
for true source locations; (2) the size as well as odd and 
littoral shapes of enumeration units, especially in east-
ern North Carolina, which may influence results; (3) the 
relative location of food sources within an enumeration 
unit, where a food source near the border of a tract may 
be patronized by many in another tract but not counted 
for that tract depending upon the agglomeration method 
(count) utilized; and (4) the need and manner of normali-
zation used. Nevertheless, their potential to provide spa-
tially explicit information can help identify areas where 
interventions are needed to address food-related health 
disparities.

In this study, a density-based raster surface using the 
point density calculation will be created to assess and 
evaluate the availability of Dollar stores in Central North 
Carolina. Raster data are useful for representing continu-
ous phenomena such as elevation or satellite imagery, 
and in the case of this research, store density. Prior work 
in this realm has explored distance and/or travel time to 
a given destination results in a travel-time surface. This 
aligns with the raster-based food desert analysis previ-
ously performed by the research team [24]. The applica-
tion of cost-based surfaces is not new in studying food 
security. Yeager and Gatrell [32] developed a travel-time 
surface for rural Illinois by creating an interpolated 
travel distance surface. Hallett and McDermot [11] also 
developed a cost surface, representing the cost in dol-
lars spent to travel to the nearest grocery store based 
on the IRS value of the cost to operate a motor vehicle 
($0.505/mile). Chen and Clark [8] expressed food access 
via both raster and 3-D surfaces as a product of spatial 
access and a store’s hours of operation, thus creating food 
deserts that change diurnally. While other limitations of 
utilizing raster data in food security analysis may exist, it 

will not be constrained by the discrete nature of vector 
data most often used in food environment analyses using 
GIS. Using statistical methods, results from this density 
metric will be compared to the previously utilized and 
aforementioned measures to determine how and to what 
degree it compares to vector-based counterparts.

Materials and methods
Study area
As part of a larger research project into food avail-
ability in North Carolina, we conducted a pilot study 
in six of North Carolina’s central counties, includ-
ing Alamance, Caswell, Chatham, Durham, Orange, 
and Person. This study area was selected due to its (1) 
proximity to the authors’ host institution; (2) an area 
that has a manageable number of Dollar store that 
could be handled within the scope of this project; and 
(3) the combination of rural to suburban and urban 
regions in the study area. The region is known for its 
strong economy, high quality of life, and thriving cul-
ture and arts scene. The region is also racially and eth-
nically diverse, with a significant proportion of African 
Americans, Hispanics, and Asian Americans com-
bined with a population of over 700,000 people. The 
study area has an area of 2675  miles2 (6936.5  km2). The 
area is home to several major universities, including 
UNC Chapel Hill, North Carolina Central University, 
Elon University and Duke University, which provide a 
highly educated workforce and drive innovation and 
economic growth. In the study area, there are several 
malls and shopping centers and a large outdoor shop-
ping complex. For groceries, there are many options, 
including Target, Food World, Food Lion, Harris Tee-
ter, and Walmart. Family stores are also widely availa-
ble in all six counties, including Dollar General, Dollar 
Tree, Family Dollar, and Big Lots. These stores offer 
a wide range of products at affordable prices, making 
them a popular choice for families and budget-con-
scious shoppers (Fig. 2).

Data collection
The GIS vector data for county boundaries, census 
tracts, and Dollar stores were used for the spatial anal-
ysis in this study. The boundary data were retrieved 
from the NC OneMap (http:// www. ncone map. gov), a 
public repository of spatial data for the state of North 
Carolina. The Dollar store dataset was extracted from 
the US business feature class provided by DataAxle. 
The Dollar stores were extracted by their name (Dollar 
General, Family Dollar, and Dollar Tree) from all busi-
nesses with the study area and a 10-mile buffer within 
the study area using the Select by Attributes and Select 
by Location tools in ArcGIS Pro (v. 3.0) and are current 

http://www.nconemap.gov
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through mid-2022. There are 94 Dollar stores within 
the study area (163 within the 10-mile boundary), up 
from 49 in 2009 (98 within 10-mile buffer). There are 
420 census block groups in the study area, which range 
in population from 4 to 9460 and range in area from 
0.075  mi2 (0.194  km2) to 63.701  mi2 (165.182  km2).

Data processing and geostatistical analysis
All geostatistical analyses were performed with the Esri 
ArcGIS Pro software with the help of geoprocessing 
toolsets. In addition to the point density metric, which 
serves as the focus of this research, six other measures 
of Dollar store availability analysis were performed and 
then compared to each other. The geoprocessing and 
statistical tools from the spatial analyst toolset, network 
analyst solvers and data management toolset were used 

for availability measures in this research. Each metric, 
described in Table 1, are highlighted below:

a. Point Density: In this measure, availability is meas-
ured to be the density of Dollar stores measured at 
the pixel level within 3 miles of a particular pixel and 
then grouped within block groups. The point den-
sity surface is generated by calculating the number 
of points within a specified distance of each pixel 
location in the study area and then representing the 
results as a continuous surface (raster layer). The Spa-
tial Analyst extension of ArcGIS Pro software calcu-
lates the density of point features around each output 
raster cell to define a neighborhood around each ras-
ter cell. We utilized the point density spatial analyst 
tool to calculate the magnitude of dollar stores per 
unit area within this 3-mile neighborhood around 
each raster cell. In order to compare it to other avail-

Fig. 2 Map of study area
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ability metrics collected at the census block group 
level, the value of the resultant raster was extracted 
using the Zonal Statistics tool, also within the Spatial 
Analyst extension. This Spatial Analyst extension is a 
suite of tools focused explicitly on raster data calcula-
tion. Each census tract was assigned an average point 
density value for each of the pixels contained within 
it by joining the zonal statistics table to the census 
block group feature class. The resulting metric is a 
density value based on this average pixel density and 
is visualized in Fig. 6.

b. Drive Time: In this metric, availability is measured at 
the block group scale to be the drive-time between 
the block group centroid and the nearest Dollar store. 
The Closest Facility calculation within the Network 
Analyst toolbar was used to calculate the drive-time 
between each source (420 block group centroids) and 
the nearest of possible destination representing the 
164 Dollar stores within 10 miles of the study area. 
This result is a drive-time calculation in minutes for 
each block group.

c. Join Count: In this metric, availability is measured 
to be the number of Dollar stores located within a 
census block group. This approach merely involves 
counting the number of Dollar stores within a census 
block group in the study area using the Spatial Join 
processing tool. Several researchers have adopted 
this method for food desert availability and acces-
sibility measure [2, 6], and the resulting measure is 
simply a number, representing the number of stores 
in the block group.

d. Buffer (3 miles): In this metric, the availability for a 
block group is calculated to be the number of Dol-

lar stores within 3 miles of a block group (as well as 
those within the block group). The Spatial Join tool 
was implemented; however, a search radius of 3 miles 
was specified in the Spatial Join parameters. The 
resulting measure is simply a number, representing 
the number of stores within the block group as well 
as the 3-mile buffer.

e. Euclidean distance: In this measure, availability is cal-
culated to be the Euclidean (straight-line) distance 
between a block group centroid and the nearest Dol-
lar store. This was done using the Near geoprocessing 
function which calculates the distance between input 
features (block group centroids) and near features 
(Dollar stores). The resulting metric is a distance in 
miles.

f. Store density by area: In this measure, availability 
at the block group level is measured to be the num-
ber of stores within a 3-mile area of the block group 
(Method d) normalized by the area of the block 
group. This method filters out larger block groups 
who may have high buffer values based solely on its 
size and the result is represented as the number of 
Dollar stores per square mile.

g. Store density by population: In this measure, avail-
ability at the block group level is measured to be the 
number of stores within a 3-mile area of the block 
group (Method d) normalized by the population 
of the block group. This method filters out regions 
that may have more Dollar stores because they have 
higher populations, and the result is represented as 
the number of Dollar stores per 1000 population of 
the block group.

Table 1 A comparison figures for all the availability measures

Bold represents highest Jaccard Index

Measure Point Density Drive Time Join Count Buffer (3 Miles) Euclidean 
distance

Store 
density by 
area

Store density 
by population

Point Density – 0.70 0.22 0.78 0.71 0.81 0.69

Drive Time 0.70 – 0.25 0.60 0.73 0.69 0.61

Join Count 0.22 0.25 – 0.22 0.25 0.19 0.22

Buffer (3 Miles) 0.78 0.60 0.22 – 0.59 0.70 0.81
Euclidean Distance 0.71 0.73 0.25 0.59 – 0.70 0.56

Store density by area 0.81 0.69 0.19 0.70 0.70 – 0.70

Store density by population 0.69 0.61 0.22 0.81 0.56 0.70 –

Average (AVG) 0.65 0.60 0.23 0.62 0.59 0.63 0.60

AVG without Join Count Jaccard Index 0.74 0.67 – 0.7 0.66 0.72 0.67
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A summary of these calculations is below:

Metric Calculation

Point Density Tool: Point Density
Calculates a magnitude-per-unit area 
from point features (dollar stores) that fall 
within a neighborhood around each cell
Point density = #ofDS

A
# of DS = number of Dollar stores 
within neighborhood of each output raster 
cell
A = area of the neighborhood

Store density by area Tool: Calculate Field (on the attribute table)
Store density by area =

# of DS
A

# of DS = number of Dollar stores 
within a block group
A = area of each block group (in square 
miles)

Store density by population Tool: Calculate Field (on the attribute table)
Store density by population =

# of DS
P

# of DS = number of Dollar stores 
within a block group
P = population of each block group

Join Count Tool: Spatial Join
Join count = # of DS within a block group

Buffer 3 miles Tool: Spatial Join
Join count = # of DS within 3miles of a block group

Euclidean distance Tool: Near (Analysis)
Calculate distance between input feature 
in one layer (block group centroid) 
and closest feature in another layer (dollar 
store)
Calculation rule: The distance between two 
points is the straight line connecting 
the points

Drive Time Tool: Closest Facility Solver (Network Analyst)
Calculation rule: Finds the one facility (dol-
lar store) that is closest to a source (block 
group centroid) based on travel time using 
best driving routes

Standardization of data
A major goal of this project is to test the efficacy of a new 
metric (Method a) to measure food availability compared 
to proven and existing measures (Methods b–g). Given 
their varying units of measure, simple change detection 
techniques (subtracting the value of one from another 
and mapping or analyzing their differences, for example) 
between each of the metrics are not feasible. Further-
more, while units of measure each and unto themselves 
have powerful computational value, they have little value 
to the lay user. As a result, for each metric, every block 
group is assigned one of three values (Most Available, 
Least Available, Neither) based on the quintile classifica-
tion of that particular metric. For example, Point Density 
(Method a) values for the 420 block groups range from 

0 to 0.527214. The ‘Least Available’ block groups are 
denoted as the 84 (420 ÷ 5) block groups with the lowest 
values which range from 0 to 0.020521. The ‘Most Availa-
ble’ block groups are the 84 block groups with the highest 
point density values whose values range from 0.310435 
to 0.527214. The remaining 252 block groups are classi-
fied as ‘Neither’ for that metric. This was repeated for the 
six other metrics. Most of these classes were fairly easy 
to extract except for the Join Count (number of stores 
within a block group) method. The result of the count 
analysis had only five values ranging from 0 to 4. This lack 
of granularity saw exactly 84 block groups with one or 
more Dollar store, which were classes as ‘Most Available’. 
The remaining 336 block groups with no Dollar stores are 
classified as ‘Least Available’ while no block groups are 
classified as ‘Neither’ using this method.

Comparative analysis using the Jaccard Index
The Jaccard Index (JI), also known as the Jaccard simi-
larity coefficient or Jaccard similarity index, is a statistic 
used to measure the similarity between two data sets. It 
is calculated as the ratio of the intersection between two 
sets versus their union. The Jaccard Index ranges from 
0 to 1, with higher values indicating greater similarity 
between the two sets. The formula for calculating the Jac-
card Index is:

where A and B are two sets of data, and in this case, class 
values (Least Available, Most Available, Neither) derived 
from the different availability metrics highlighted in 
Methods a through g. ∩ represents the intersection of the 
two sets (values in common) while ∪ represents the union 
of the two sets (420).

While the Jaccard Index can also account for binary 
vectors (Least Available and Null, for example) which will 
change size of the union, this analysis will utilize 420 as 
the union value since all block groups have been assigned 
a value and there are no Null values. While the Jaccard 
Index can be calculated by running some Select by Attrib-
utes queries and dividing by the total number of block 
groups (420) representing the Union of two metrics, the 
research team created a custom Jaccard Index Calcula-
tion tool using the in-built Python toolbox template to 
derive input parameters (input datasets, attributes, type 
of calculation) and custom Python code to run the cal-
culations and output the results. Our Jaccard Index Cal-
culation tool is an asset to any researcher or professional 

J (A,B) =
|A ∩ B|

|A ∪ B|
,
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seeking to analyze and understand similarities between 
fields in their data (Fig. 3).

This Python-programmed ArcGIS-based Jaccard Index 
calculation tool has been used by the research team for 
the comparative analysis on the varying definitions of 
urban [23].

Results
The Point Density metric (Fig. 5) utilizing little-used Spa-
tial Analyst (in the food environment realm) tools was 
created and then grouped into 420 block groups in Cen-
tral North Carolina (Fig.  6). By appearances, it appears 
much like its vector-based counterparts. Six other pop-
ular food availability metrics taken from prior research 
works and calculated in the vector GIS environmental 
were calculated as well, and all 420 block groups in study 
area were classified as ‘Least Available’, ‘Most Available’ 
or ‘Neither’ based on a simple quintile classification of 

each of the metrics since simple change detection anal-
ysis techniques are not possible. Pairwise Jaccard Index 
calculations (Point Density vs. Euclidean Distance, for 
example) were performed between each metric and its 
six counterparts.

Table  1 represents the Jaccard Index values between 
all seven of the difference measures. Values closer to 1 
represent higher agreement or similarity between the 
method of measures while values closer to 0 represent 
weak similarity between methods. For example, the 
Point Density and Store Density by Area metrics agreed 
with each other for 81% (tied of the highest between all 
21 of the pairwise calculations) of the 420 block groups 
across the ‘Least Available’, ‘Most Available’ and ‘Nei-
ther’ classifications while Euclidean Distance and Store 
Density by Population agree with each other for 56% of 
the study area’s 420 block groups (Figs. 4, 5).

The Jaccard Indices for each of these pairwise calcula-
tions were averaged for each column/measure, resulting 
in the metric that best agreed with its six counterparts. 
Based on this, a general observation shows the Point 
Density outperformed other measures of availability 
adopted in this study. By far the Join Count method 
has the poorest performance with an average JI value 
of 0.23. However, this poor performance is due to the 
way the Join Count data were classified as either ‘Least 
Available’ or ‘Most Available’, with no ‘Neither’ classes 
assigned due to the lack of granularity with values. 
Even when the average of this Join Count outlier is 
removed from each of the metrics and the average is 
recomputed, the Point Density metric compares well to 
the other five food availability counterparts. These are 
highlighted in Figs. 2 and 3.

Discussion
While often conflated with the concept of food access, 
the notion of food availability is largely geographical in 
nature and represents the proximity of food sources to 
a location. Food availability serves as one of the pillars 
of food security and is one that can easily be measured 
across place and space within the confines of a Geo-
graphical Information System (GIS).

While the research team is satisfied with these anal-
yses and results, it is imperative to note the methods 
employed in this research to measure Dollar store 
availability were largely influenced by individual tool 
parameters, limitations, and choices by the research 
team. These influences include:

Fig. 3 Jaccard Index calculation tool
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Influence Explanation

The use of the centroid as a source For drive-time and Euclidean 
distance calculations for avail-
ability, source locations were 
derived from block group centroids, 
where drive-time and Euclidean 
distance were calculated from these 
sources to the nearest destination 
(Dollar store), respectively. Other 
sources do exist. While indi-
vidual address locations extracted 
from parcel data can be utilized 
as sources and these calculations 
run for each address and grouped 
at the block group level, they are 
computationally expensive to run 
and may not run on desktop com-
puters. Research by Mulrooney et al. 
[22] showed population-weighted 
block groups serve as accept-
able proxies for these individual 
addresses without compromising 
results while decreasing the num-
ber calculations by three orders 
of magnitude (291 source locations 
vs. 177,000 in their study) and may 
have an impact on research results 
over the geographic centroid

Influence Explanation

Use of 3-class system Measures of availability were cre-
ated using various units of measure 
(drive-time in minutes, # of stores, 
# of stores per square mile, etc.) 
and converted to classes of ‘Least 
Available’, ‘Most Available’ or ‘Neither’ 
based on the quintiles of these 
units of measure. Since all block 
groups contained a value, a set 
comparison for the Jaccard Index 
was run as opposed to a binary 
vector where block groups take 
on only two values: ‘1’ or ‘0’ or in this 
case ‘Least Available’ or ‘Null’. While 
there is a consistent number 
of block groups (420) in the union 
for set calculations, the number 
of block groups from the union 
of two binary vectors is variable 
depending upon the number 
of non-null block groups. Since 
measuring availability, either good 
or bad, served as the focus of this 
paper, sets were used to high-
light the importance of retaining 
the most and least available block 
groups. As a result, the set calcula-
tion for the Jaccard Index was used 
instead of the binary vector which 
essentially measures only one 
category

Use of the Join Count Jaccard 
Index calculation

Values only ranged from 0 to 4 
(Dollar stores located within the 420 
polygonal block groups). As a result, 
the 84 block groups which con-
tained a Dollar store were classified 
as ‘Most Available’ while all others 
were classified as ‘Least Available’. 
As a result, there were no ‘Neither’ 
block groups in this method. Only 
7 block groups contained more 
than one Dollar store and 77 
contained exactly one Dollar store. 
While slightly different classes 
could’ve been created with this 
configuration (7—‘Most Available’, 
77—‘Neither and 336 ‘Least Avail-
able’), both deviated significantly 
from the quintile configuration 
for other metrics, resulting in low 
Jaccard Indices. Because of this, 
a separate Jaccard Index average 
was calculated removing this outlier

Use of 3-Mile Buffer Length This 3-mile buffer serves as a happy 
medium between the 1-mile 
and 10-mile buffers used to denote 
Low Access to urban and rural cen-
sus tracts, respectively, by the USDA 
Food Access Atlas. However, 
research by Gallagher (2014), 
Schlundt et al. (2017) and Barnes 
et al. (2015) explicitly utilized 3-mile 
buffers as measures of food avail-
ability in their research

Fig. 6 Dollar store point density surface
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In support of this research, an ad hoc tool was devel-
oped by the research team to run a pairwise Jaccard 
Index between two attributes. It consisted of an interface 
using ArcGIS Pro tool builder requesting four param-
eters: input feature class, class attribute #1, class attribute 
#2 and type of Jaccard Index calculation (binary vector or 
set). Underlying custom Python code calculates the Jac-
card Index and outputs the results. While this Jaccard 
Index could be calculated using the Select by Attributes 
functionality and hand-calculations, the research team 
foresees the utility of nominal and categorial attribute 
comparisons across fields such as biogeography, agri-
culture, remote sensing, environmental science, sociol-
ogy and criminal justice, and plans to develop a custom 
tool to perform this within the vector and raster data 
environments.

Conclusions
In this study, the availability of Dollar stores such as Dol-
lar General, Family Dollar and Dollar Tree was calcu-
lated using traditional vector techniques, as well as the 
introduction of a raster-based density calculation. Dol-
lar stores, which serve as source of food, were chosen 
because of their adequate sample size and ubiquitous 
nature across urban/suburban/rural landscapes within 
a 6-county study area in central North Carolina, home 

to more than 700,000 people. This raster-based density 
metric created for the study area essentially measures 
the density of Dollar stores within the study area as well 
as those within a 10-mile buffer of the study area. This 
was done because people living within the study area may 
be ‘closer’, however that is defined for each of the met-
rics, to Dollar stores that are outside of the study area. 
The resulting density surface (Fig.  6) was grouped into 
census block groups (Fig. 7) and block groups were clas-
sified as ‘Least Available’, ‘Most Available’ or ‘Neither’ 
(Fig.  10) based on a simple quintile classification of the 
resulting density metric. Other availability metrics such 
as drive-time to the closest Dollar store (Fig. 8a), a Join 
Count (Fig. 8b) statistic which basically counts the num-
ber of Dollar stores within each block group and areal 
density (Fig. 9a) which represents the density (# of stores 
within 3 miles of a block group per square mile) of Dol-
lar stores were also calculated. Since each measure elic-
its its own distinct unit of measure that do not allow for 
simple comparison, each block group was classified as 
‘Least Available’, ‘Most Available’ or ‘Neither’ based on 
the aforementioned quintile classification (Fig.  10). A 
custom Python tool was created by the research team 
where a pairwise Jaccard Index which calculates the per-
cent of agreement (via a value between 0 and 1) between 
the classes for each measure was computed and all 21 

Fig. 7 Spatial variation in food store availability based on point density (a) and 3-mile buffer (b)
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Fig. 8 Spatial variation in food store availability based on drive time (a) and Euclidean distance (b)

Fig. 9 Spatial variation in food store availability based on store density by area (a) and store density by population (b)
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of these pairwise calculations which were subsequently 
placed into a resulting table and further summarized 
(Table  1). The Point Density metric performed slightly 
better than vector-based counterparts, even when outli-
ers were removed. In summary, major results highlight:

• A density-based metric to measure food availability 
is easy to calculate and does not require more robust 
network calculations such as drive-time and drive-
distance, geoprocessing calculations such as the Join 
Count and Buffer nor field operations such as density 
(by area or population) metrics.

• Using a pairwise Jaccard Index summarized and then 
averaged in a correlation table (Table  1), the Point 
Density measure rated the highest (0.65) when com-
pared to 6 other popular vector-based techniques. 
Given the lack of granularity with the Join Count 
statistic which created coarse classifications, a new 
average Jaccard Index was calculated without the 
Join Count Jaccard Index. Even then, the average Jac-
card Index for this metric (0.74) rated higher than its 
other 5 counterparts, including Drive-Time (0.67), 
Buffer (0.70), Euclidean Distance (0.66), Store Den-
sity by Area (0.72) and Store Density by Population 
(0.67).

Ancillary results from this research highlighted of the 
six counties in the study area, Alamance County has the 
best access to Dollar stores according to this Point Den-
sity metric. This is interesting because Alamance County 
has both a higher density (0.23 vs. 0.21) and even more 
Dollar stores (34 vs. 28) than Durham County, which has 
a population almost twice that of Alamance County. This 
county is situated between the larger cities of Greensboro 
and Durham, and is the subject for future research at a 
higher scale.

While further work may want to align these spatial rela-
tionships with socio-economic variables and long-term 
health outcomes at the block group level, this research 
highlights the efficacy and utility of easy-to-use density-
based availability metrics not traditionally used in the 
spatial representation of the food environment. This met-
ric does not require robust network calculations such as 
drive-time calculations and provides more granularity 
than simple point-in-polygon and even buffer calcula-
tions resulting from the Spatial Join operation. Insights 
ad.

Future work which quantitatively evaluates food 
availability with an eventual goal of dictating local, 
regional, and even state-level policy should critically and 

Fig. 10 Spatial variation of food store availability based on Jaccard availability metric (least available, most available, and neither) for point density 
and buffer methods
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holistically consider this metric as powerful and conveni-
ent metric that can be easily calculated by the lay GIS 
user and understood by anyone.
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