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Abstract 

Background The main challenge of organic cereal systems is ensuring high yields and grain quality while maintain-
ing pedo-environmental sustainability. Despite the potential benefits of organic farming systems, a debated limitation 
is their actual contribution to food security. Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], one of the 
most important staple food crops, is mainly grown in the Mediterranean environments, where farmers have to face 
profound inter-annual fluctuations in productions, expecially under organic system, due to prolonged drought and 
heat spells. With the overarching objective of deriving practical indications to support organic wheat production in 
the Mediterranean region, we tested the effect of nitrogen and sulphur-based organic foliar fertilizers on two ancient 
and two modern durum wheat varieties grown in two seasons (2018–2019) characterized by different weather condi-
tions. Moreover, we evaluated the effect of a foliar application of Selenium at booting on grain yield and quality.

Results Results from the Principal Component analysis revealed that seasonal weather and the varietal choice 
determined most of the variability of yield and quality traits, while Selenium application markedly affected the 
performance of organic durum wheat, especially in the milder season. The Cluster Analysis computed on the Princi-
pal Components revealed three groups, representative of (i) the modern variety, Marco Aurelio, grown in the dryest 
season (average yield, low protein content), (ii) all varieties grown in 2018, with the addition of sodium selenate (high 
yield, high protein content), and (iii) the ancient variety, Cappelli, grown in both seasons (low yield, average protein 
content).

Conclusions This study evidenced that tailored agronomic practices are needed to sustain the organic durum wheat 
systems in the Mediterranean area. The promising beneficial effect of Selenium would deserve a dedicated research 
program, where additional experiments should further investigate its impact on organic durum wheat yield and 
quality. The multivariate approach permitted us to identify the most effective agronomic practices in relation to dif-
ferent environmental conditions; the outputs from this study are ready to be transferred to organic farmers aiming at 
improving the performance of durum wheat systems and at providing an effective contribution to food security.
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Introduction
According to the International Federation of Organic 
Agriculture Movements (IFOAM), organic agriculture is 
a production system that sustains the health of soils, eco-
systems, and people, producing high-quality food with-
out using mineral fertilizers, synthetic pesticides, animal 
drugs, and food additives that may have adverse health 
effects [1].

Some studies reported that, with certain crops and 
under certain growing conditions, organic systems 
come closer to matching conventional systems in terms 
of yields [2, 3]. On the contrary, in several studies, crop 
yield averages are reported to be from 8% to 25% lower in 
organic systems than in conventional ones [4–7]. Organic 
cereal have about 26% of yield reduction in organic farm-
ing [8] and this aspect is crucial since cereal is knowing to 
be one of the main food source for world population [9]. 
Furthermore, climate change has, and will increasingly 
have, severe impacts for agricultural production and food 
security [10], with uneven effects depending on the geo-
graphical area. For example, the Mediterranean basin has 
been identified as one of the most vulnerable regions to 
climate changes globally [11], being highly affected by 
increasing water scarcity and drought.

Durum wheat [Triticum turgidum subsp. durum 
(Desf.) Husnot] is an important cereal crop feeding 
humanity [12]. It is mainly grown in the Mediterranean 
environments [13], where farmers must face profound 
inter-annual fluctuations in yield and quality due to pro-
longed drought and heat events [14]. Furthermore, in the 
organic farming, these environmental stresses, combined 
with the limited soil N availability of organic systems [15, 
16], are detrimental to yield formation, as leaf water rela-
tions and photosynthetic activity are impaired, leading to 
reduced growth rates, shortened grain filling period, and 
lower grain weights [17].

Since the EU political framework is pushing towards a 
wider adoption of organic farming in the coming years 
[18], researchers need to provide farmers with innovative 
and sustainable agronomic strategies to stabilize organic 
durum wheat yield and quality to contribute to food 
security. Within the organic sector, there is a high inter-
est in heritage varieties of wheat, and old wheat varieties 
are claimed to possess better characteristics than modern 
cultivars in several respects [19]. Moreover, in literature 
is often reported that the modern varieties are usually 
unsuitable for organic systems [20] which needed dedi-
cated breeding program. Other authors find it difficult to 
develop separate breeding programs for organic crops, 
considering also that many breeding goals are the same 
for organic and conventional grains [19]. Indeed, modern 
breeding approaches aim at obtaining cultivars capable 
of high yield under sustainable agricultural conditions 

and adapting to climate change [9]. Relative to organic 
nitrogen management, even if it is well-known that split-
ting mineral N application in conventional agriculture 
increases fertilization efficiency [21–23], topdressing or 
foliar fertilizations are not commonly used in organic 
farming. The synergistic effect of sulfur (S) and organic N 
soil fertilization could also lead to higher yields and bet-
ter quality in durum wheat [24]. Still, their contemporary 
use as organic foliar fertilizers in organic durum wheat 
is almost unexplored. Besides macronutrients, the Euro-
pean Commission Regulation (EC) No. 889/2008 allows 
using trace elements in fertilizer formulations for organic 
production. Selenium (Se) is not listed among eligible 
trace elements, although its beneficial effects on stress 
tolerance [25, 26] and its positive action on plant pro-
ductivity and nutritional quality have been widely docu-
mented [27–30], also on wheat [31, 32]. However, its use 
as ingredient in foliar fertilizer formulations has not been 
proposed yet in organic systems [33].

We conducted a 2-year field experiment, where four 
durum wheat varieties were grown under alternative 
organic farming practices in the Mediterranean area to 
identify the most promising on yield and quality traits. 
We evaluated the effect of N and S foliar applications 
from organic sources in combination with Se on yield, 
grain protein concentration, plant N content, dry plant 
biomass, and harvest index using multivariate analyses. 
Our study provides the first scientific report on the effec-
tiveness of Se as foliar fertilizer on organic durum wheat, 
giving quantitative figures to evaluate its potential inclu-
sion among the eligible trace elements in the European 
Organic Production Regulation.

Materials and methods
Experimental setup
Experimental field trials were conducted in 2017–2018 
and 2018–2019 (2018 and 2019 hereafter) at the Research 
Centre for Cereal and Industrial Crops (CREA-CI) in 
Foggia, Southern Italy (41°46′N, 16°54′E), as reported 
by Carucci et  al. [33]. Two old (Old Saragolla and Cap-
pelli) and two modern (Marco Aurelio and Nadif ) durum 
wheat varieties were grown on clay soil (United States 
Department of Agriculture Classification, Washington, 
DC, USA) (Table 1) according to standard organic farm-
ing practices.

The field experiment was arranged in a split–split plot 
design with three factors (variety, organic fertilization, 
Se application) and three replicates. The durum wheat 
variety was the main plot, the organic fertilization was 
the plot, and the selenium application was the sub-plot 
(10.2  m2). The fields chosen for experimental trials were 
homogeneous and without preceding crop (set-aside). 
The sowing dates were 1st December (2018) and 24th 
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November (2019). Sowing was performed at a seeding 
rate of 350 germinable seeds  m−2. Four fertilization strat-
egies were evaluated: (1) control (CTR), where 50 kg  ha−1 
of dry blood meal was applied at sowing; (2) CTR, plus 
45 kg  ha−1 of foliar S applied at flag leaf stage (BBCH 47, 
CTR + S); (3) CTR, plus 45  kg   ha−1 of foliar N applied 
at heading (BBCH 51, CTR + N); (4) CTR, plus N and S 
foliar application at flag leaf and heading stages, respec-
tively (CTR + NS). The effect of Se application was evalu-
ated by comparing Se0, without selenium application, 
and Se60, where one foliar application of sodium selenate 
 (Na2SeO4), at the rate of 60  g   ha−1 [34] was applied at 
booting stage (BBCH stage 41). Foliar fertilizers were 
applied with a hand-held knapsack sprayer. All agricul-
tural practices were performed according to the organic 
practices commonly adopted by local farmers, following 
the European Council Regulation (EC) No. 834/2007. A 
weather station close to the experimental field recorded 
daily precipitation and temperature. In the 2018 and 
2019 growing seasons, accumulated precipitations were 
401  mm and 299  mm, and average temperatures were 

13.5 °C and 11.7 °C, respectively. Figure 1 reports precipi-
tation and temperature trends in the 2  years compared 
with the long-term average (2000–2017) (source: NASA 
POWER database [35]).

Determination of yield, grain protein concentration, plant 
N content, plant dry weight, and harvest index
At physiological maturity (BBCH stage 87), on 0.5 linear 
meters, plants were taken in two adjacent rows, cutting 
off the shoots at the crown level and separating them into 
straw and grain.

Plant dry weight was determined by oven drying the 
samples at 65 °C until constant weight. All samples were 
grounded using a Cyclotec Sample Mill 1093 (Foss Teca-
tor, Hillerød, Denmark). N concentration in straw and 
grains was determined triplicate using Leco CHNS 628 
Analyzer (Leco corporation, St. Joseph, Michigan); N 
content was computed as the product of dry weight and 
N concentration. Total plant N content was derived as 
the sum of N content of the straw and grain. Finally, Har-
vest Index (HI) was computed as the ratio of grain weight 
to aboveground dry matter [36]. At full maturity (11% 
humidity, on 29 and 18 June in 2018 and 2019), the crop 
was machine-harvested, and the yield was evaluated. 
Grain protein concentration (GPC, %) was determined 
on grain samples by near-infrared reflectance spectros-
copy (Infratec 1229, Foss Tecator, Hillerød, Denmark).

Statistical analyses
Multivariate analyses were performed on the five durum 
wheat traits (i.e., yield, grain protein concentration, plant 
N content, plant dry weight, and harvest index), consid-
ering the four genotypes, the four organic fertilization, 
and the two Selenium applications over the 2  years as 
additional descriptors [37]. A correlation analysis fol-
lowed by a Principal Component Analysis (PCA) was 

Table 1 Main soil physical and chemical properties of the 
experimental fields in 2018 and 2019

a Mineral N was determined at 0.3 m soil depth in pre-sowing as the sum of 
nitrate and ammonium content [56]

Soil properties Unit 2018 2019

Sand % 11.4 15.4

Silt % 39.6 34.9

Clay % 49 49.7

Total N (Kjeldhal method) ‰ 1.3 1.1

Mineral  Na mg  kg–1 15.9 19.2

Available P (Olsen method) mg  kg–1 62 68

Exchangeable K (Ammonium acetate method) mg  kg–1 422 450

Organic matter (Walkley–Black method) % 2.5 2.6

Fig. 1 Daily accumulated precipitation (mm) (a) and air temperature (°C) (b) in 2018 and 2019 (1st January–20th June). The black line (a)—average 
accumulated daily precipitations from 2000 to 2017. Shaded areas (b)—daily average mean ± standard deviation for Tmax (orange) and Tmin (cyan) 
in 2000–2017
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performed using all experimental traits (yield, grain 
protein concentration, plant dry weight, plant N con-
tent, and harvest index) as active quantitative variables. 
The variables were centered and scaled before the PCA 
through diagonalization of the correlation matrix and 
extraction of the associated eigenvectors and eigenval-
ues. All tested factors (growing season, variety, organic 
fertilizer, and Se application) were used as qualitative 
supplementary variables in the PCA, i.e., they did not 
contribute to the computation of Principal Components 
(PC). Their coordinates were calculated as the barycen-
tre of the corresponding individuals in the PC space. We 
then applied a non-supervised Hierarchical Clustering on 
Principal Components (HCPC) using Euclidean distance 
and Ward’s criterion to identify groups of data showing 
similar behavior. The cluster’s mean of any experimental 
factor 

(

Xq
)

 was tested under the null hypothesis that the 
distribution of X  did not vary across clusters (Eq. 1):

where nq is the number of experimental data in cluster q, 
N is the total number of data, and S is the global standard 

(1)
u =

Xq − X
√

S2

nq

(

N−nq
N−1

)

deviation. A v test was computed to characterize the 
clusters considering both active and supplementary 
variables under the null hypothesis (H0) that the cluster 
average did not differ from the overall average. The sign 
of the v test statistic indicates an under- (−) or over- (+) 
representation within the cluster. All statistical analyses 
were performed under the R 4.0.3 environment [38], Fac-
toMineR package [39] for PCA and cluster analysis, and 
ggplot2 [40] package for boxplot analysis and graphical 
representations.

Results
Principal component analysis
All Pearson correlations among durum wheat traits were 
significant at p ≤ 0.05, except for the correlation between 
yield and plant dry weight (Fig.  2a). Strongest posi-
tive correlations emerged between plant N content and 
plant dry weight (0.7), and between yield and HI (0.68), 
whereas plant dry weight was negatively correlated with 
HI (− 0.6). GPC was positively correlated with plant N 
content (0.42), plant dry weight (0.36), and yield (0.19) 
and negatively with HI (− 0.19).

The first two components, explaining 79.8% of the 
total variance, were retained in the analysis (Fig.  2b). 
Next, the characterization of PCs was performed by 

Fig. 2 Correlation matrix with Pearson’s r values (A), scree plot (B) of the principal component analysis, and biplot of variables (C) of durum wheat 
grain yield, grain protein concentration (GPC), plant N content (PlantNContent), plant dry weight (PlantDryWeight), and harvest index (HI)
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calculating correlation coefficients with active and 
supplementary variables and the associated signifi-
cance level (Table 2).

The first PC (PC1) explained 46.4% of the total vari-
ance; it was positively correlated with GPC, plant N 
content, and plant dry weight and negatively with HI, 
whereas its correlation with grain yield was not sig-
nificant (Table  2). Thus, PC1 could be considered as 
a “qualitative factor”. The second PC (PC2) explained 
33.4% of the total variance and was highly correlated 
with grain yield and HI, whereas GPC and plant N 
content showed weaker correlations with PC2, even if 
significant (Table  2). Thus, PC2 could be considered 
as a “quantitative factor”. Among the supplementary 
qualitative variables, growing season and variety were 
significantly and positively correlated with PC1 and 
PC2, while Se application was significantly and posi-
tively correlated with PC2 (Table 2).

Relative to PC1 (“qualitative factor”), positive bar-
ycenter’s coordinates were observed for 2018 and for 
the old variety Cappelli, which showed the highest 
positive coordinate, while 2019 data and the modern 
variety Marco Aurelio obtained significative negative 
coordinates (Table  3). On the “quantitative factor” 
PC2, significant positive values resulted for 2018 data 
and for the modern variety Marco Aurelio, which 
obtained the highest positive coordinate, and for Se60 
plots (Table 3). Finally, the barycenter of Cappelli and 
Old Saragolla was placed on the negative side of PC2, 
along with 2019 and Se0 (Table 3).

Cluster analysis
Three clusters emerged from the hierarchical clustering 
performed on the extracted PCs (Fig.  3a). The clusters 
composition was characterized considering the repre-
sentativeness of the qualitative and quantitative variables 
used in the PCA, using an alpha level α = 0.05 for all sta-
tistical tests. All quantitative variables significantly con-
tributed to explaining the inter-cluster variance, with 
GPC (ƞ2 = 0.72) and yield (ƞ2 = 0.62) as the most rel-
evant variables. Category frequency distributions within 
clusters for the qualitative variables highlighted that 
the growing season and the variety at p ≤ 0.001, and Se 
application at p ≤ 0.05, were significantly different from 
the overall frequency distribution according to χ2 test, 
whereas organic fertilizer was not significant (p = 0.42).

Cluster 1 (C1) was entirely composed of experimental 
data collected in 2019, and 55.8% of the data belonged to 
Marco Aurelio. Cappelli was absent from C1 (Table  4). 
This cluster was characterized by high HI, average grain 
yield, and low GPC (Table  5), and it was positioned on 
the negative side of the "qualitative factor" PC1 (Fig. 3a).

Cluster 2 (C2) grouped data from the 2018 growing 
season exclusively (Table  4). All varieties were equally 
represented in C2, with percentages ranging from 19.2% 
(Cappelli) to 28.9% (Marco Aurelio) (Table 4). A signifi-
cant presence of the Se60 application was evident in C2, 
whereas Se0 data were significantly under-represented.

The values of all quantitative variables belong-
ing to C2 were significantly higher than their average, 

Table 2 Correlation coefficients between active quantitative 
variables, supplementary qualitative variables, and the first two 
Principal Components (PC), with indication of the explained 
variance

ns, not significant

Significance codes: ***p < 0.001

Variable PC1 PC2

Quantitative active variables

Yield  − 0.05ns 0.96***

GPC 0.59*** 0.34***

Plant N content 0.81*** 0.37***

Plant dry weight 0.91*** 0.03ns

HI  − 0.70*** 0.70***

Qualitative supplementary variables

Growing season 0.40*** 0.58***

Variety 0.49*** 0.60***

Organic fertilizer 0.11ns 0.11ns

Selenium application 0.03ns 0.18***

Explained variance 46.4% 33.5%

Table 3 Barycenter’s coordinates of the supplementary 
qualitative variable levels in the first two Principal Components 
(PC1, PC2)

Significant values are reported in bold

CTR, control; CTR + N, control plus N foliar application; CTR + S, control plus 
S foliar application; CTR + NS, control plus N and S foliar application; Se0, no 
selenium application; Se60, one foliar application of sodium selenate

Factor Level Coordinate

PC1 PC2

Growing season 2018 0.60 0.75
2019  − 0.60  − 0.75

Variety Cappelli 1.23  − 0.73
Old Saragolla  − 0.19  − 0.49
Marco Aurelio  − 0.75 1.28
Nadif  − 0.29  − 0.07

Organic fertilizer CTR 0.10 0.09

CTR + N 0.23  − 0.17

CTR + S  − 0.12  − 0.13

CTR + NS  − 0.21 0.20

Selenium application Se0 0.05  − 0.24
Se60  − 0.05 0.24
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especially GPC and yield (Table 5). Data from C2 were 
mainly positioned on the positive side of both “qualita-
tive” and “quantitative” factors PC1 and PC2 (Fig.  3a). 
Cluster 3 (C3) was the only cluster, where the two grow-
ing seasons were concurrently present, despite 80.3% of 
the data being collected in 2019. Nearly half of the data 
in C3 belonged to Cappelli, while Marco Aurelio was 
absent. Se0 treatment was over-represented (Table  4). 
This cluster was characterized by high plant dry weight, 
average GPC, and low HI and yield (Table 5), and it was 
positioned on the negative side of the “quantitative fac-
tor” PC1 (Fig. 3a).

Finally, focusing on Se application, a boxplot analysis 
was conducted using the distributions of yield and grain 
protein concentration, i.e., the key indicators of the value 
of durum wheat productions from a farmer’s perspective. 
In C1, Se application did not significantly affect yield ( x
Se0 = 2.88 t  ha−1 with SD = 0.49 t  ha−1; xSe60 = 2.68 t 
 ha−1 with SD = 0.44 t  ha−1) and GPC ( xSe0 = 10.2% with 
SD = 0.49%; xSe60 = 10.1% with SD = 0.41%) (Fig.  3b, 
c). Conversely, in C2 Se application was determinant in 
increasing durum wheat yield, as Se60 treatment led to 
3.32 t  ha−1 (SD = 0.51 t  ha−1), which was 19.4% higher 
than the mean yield in Se0 ( xSe0 = 2.78 t  ha−1 with 

Fig. 3 PCA biplot (a) with clusters delimitation (solid black lines and italics numbers); the barycenter of the supplementary variables most 
contributing to cluster variances are highlighted with colors (2018, orange; 2019, green; Se0, red; Se60, blu) and symbols (Cappelli, circle; Marco 
Aurelio, triangle). The other supplementary variables are reported in grey. Boxplots of distributions of yield (b) and grain protein concentration (c) 
resulting from the cluster analysis. Symbols and colors of boxplot charts reflect the visuals used in the PCA biplot
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SD = 0.38 t  ha−1) (Fig. 3b). The effect of Se application on 
GPC was negligible (Fig. 3c).

Finally, the effect of Se application in cluster 3 led 
to 13% decrease in mean yield ( xSe0 = 2.13 t  ha−1 with 

SD = 0.31 t  ha−1; xSe60 = 1.88 t  ha−1 with SD = 0.31 t 
 ha−1) (Fig.  3b) and a slight reduction in average GPC 
( xSe0 = 11.7% with SD = 1.08%; xSe60 = 11.3% with 
SD = 0.57%) (Fig. 3c).

Table 4 Within-cluster distributions (Mod.Cla), v test, and p value of supplementary qualitative variables

CTR, control; CTR + N, control plus N foliar application; CTR + S, control plus S foliar application; CTR + NS, control plus N and S foliar application; Se0, no selenium 
application; Se60, one foliar application of sodium selenite

Cluster 1 Cluster 2 Cluster 3

Mod.Cla (%) v test p value Mod.Cla (%) v test p value Mod.Cla (%) v test p value

Growing season

2018 0.0  − 8.2  < 0.001 100.0 13.4  < 0.001 19.7  − 6.2  < 0.001

2019 100.0 8.2  < 0.001 0.0  − 13.4  < 0.001 80.3 6.2  < 0.001

Variety

Cappelli 0.0  − 5.0  < 0.001 19.3  − 1.6 0.1 48.5 5.3  < 0.001

Old Saragolla 16.3  − 1.5 0.1 25.3 0.1 0.9 30.3 1.2 0.2

Marco Aurelio 55.8 5.0  < 0.001 28.9 1.1 0.3 0.0  − 6.6  < 0.001

Nadif 27.9 0.5 0.6 26.5 0.4 0.7 21.2  − 0.9 0.4

Organic fertilizer

CTR 20.9  − 0.7 0.5 24.1  − 0.3 0.8 28.8 0.9 0.4

CTR + N 16.3  − 1.5 0.1 25.3 0.1 0.9 30.3 1.2 0.2

CTR + S 27.9 0.5 0.6 25.3 0.1 0.9 22.7  − 0.5 0.6

CTR + NS 34.9 1.6 0.1 25.3 0.1 0.9 18.2  − 1.6 0.1

Se application

Se0 44.2  − 0.9 0.4 42.2  − 1.9 0.04 63.6 2.7 0.01

Se60 55.8 0.9 0.4 57.8 1.9 0.04 36.4  − 2.7 0.01

Table 5 v test, mean in the cluster, overall mean, standard deviation (SD) in the cluster, overall standard deviation, and p value of the 
active quantitative variables

GPC, grain protein concentration; HI, harvest index

v test Mean Overall mean SD Overall SD p value

Cluster 1

Yield, t  ha−1 1.7 2.8 2.7 0.5 0.7 0.1

GPC, %  − 9.8 10.2 11.8 0.4 1.3  < 0.001

Plant dry weight, t  ha−1  − 6.8 6.7 8.5 1.1 2.0  < 0.001

Plant N content, kg  ha−1  − 5.4 75.2 93.1 16.7 24.7  < 0.001

HI 7.6 0.4 0.3 0.1 0.1  < 0.001

Cluster 2

Yield, t  ha−1 7.8 3.1 2.7 0.5 0.7  < 0.001

GPC, % 10.4 12.9 11.8 0.5 1.3  < 0.001

Plant dry weight, t  ha−1 1.7 8.8 8.5 1.3 2.0 0.1

Plant N content, kg  ha−1 3.9 101.2 93.1 21.1 24.7  < 0.001

HI 3.3 0.4 0.3 0.1 0.1 0.0

Cluster 3

Yield, t  ha−1  − 9.7 2.0 2.7 0.3 0.7  < 0.001

GPC, %  − 2.3 11.5 11.8 0.9 1.3 0.02

Plant dry weight, t  ha−1 4.2 9.4 8.5 2.4 2.0  < 0.001

Plant N content, kg  ha−1 0.6 94.7 93.1 27.1 24.7 0.5

HI  − 10.1 0.2 0.3 0.1 0.1  < 0.001
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Discussion
In this study we combine Principal Component Analysis 
(PCA) and Cluster Analysis to give an analytic workflow 
capable to synthesize experimental evidence and cur-
rent knowledge on organic wheat systems in semi-arid 
environments, entailing traditional and modern varie-
ties, alternative foliar fertilization strategies and the addi-
tion of Selenium as bio-stimulant to plant metabolism to 
improve yield and quality response.

The occurrence of drought stress will likely be even 
more impacting in the coming years in the Mediterra-
nean area [41], leading to a reduction of crop yield on 
major crops, with a negative impact on food security [10]. 
Wheat is one of the most important crops affecting global 
food security and is known as the source of food for more 
than 50% of the world’s population. Since it often is a 
rainfed crop, prolonged period of water scarcity condi-
tions severely compromises its grain yield [9]. In our 
field experiment, particularly harsh conditions occurred 
in 2019, which was characterized by very low precipita-
tions, 299 mm, compared with 401 mm in 2018. The field 
data from 2019 obtained negative coordinates on both 
‘qualitative’ and ‘quantitative’ PCA factors (PC1 and PC2, 
respectively) and grouped together in Cluster 1. How-
ever, Cluster 1 was mainly positioned on the positive side 
of the ‘quantitative’ PC2 factor, showing a slightly higher 
yield level than the overall mean due to the higher yield 
potential of Marco Aurelio. This result highlights that the 
choice of the variety Marco Aurelio has buffered the neg-
ative impact of water scarcity on quantitative parameters, 
such as yield and HI. Marco Aurelio is a modern variety 
released in 2010, recently approved for use in organic 
farming [42], and is among the highest yielding varieties. 
Thus, this result does not comply with the hypothesis 
that varieties that perform well under conventional farm-
ing may not perform well under organic management 
[20] and confirmed the assumption that modern varieties 
derive from breeding programs that aim to both satisfy 
food demand and support sustainable agricultural pro-
ductivity for adaptation to climate change [9]. Besides, 
Marco Aurelio is also characterized by high variability 
in GPC. This latter aspect was confirmed by the negative 
coordinates obtained by Cluster 1 on the ‘qualitative’ PC1 
factor, highlighting the detrimental impact of drought 
stress on GPC on this modern variety [43]. On the con-
trary, despite Cluster 3 grouped 80.3% of the data from 
the drier growing season, this Cluster was mainly posi-
tioned on the positive side of the ‘qualitative’ PC1 factor, 
showing a significative higher GPC value than the over-
all mean. This behavior can be attributed to the positive 
effect of Cappelli, the most represented variety in Clus-
ter 3, on the qualitative traits. Indeed, Cappelli is an old 
variety (year of release 1915), selected from individual 

lines from Italian, Syrian–Palestinian, and North Afri-
can landraces [44], characterized by high stability levels 
of protein, dietary fiber, and antioxidants [45] also under 
water stress condition. Our results suggest that the vari-
etal choice in organic durum wheat systems can be con-
sidered the most crucial agronomical factor, especially 
under water scarcity conditions like those foreseen in the 
coming years. Moreover, the varietal choice in organic 
durum wheat systems could reflect a different farmer’s 
attitude. The modern variety Marco Aurelio is the right 
choice when high yield is sought. On the contrary, the 
old variety Cappelli seems to be the most feasible alterna-
tive when seeking stability in grain protein concentration, 
even accepting lower yields.

Cluster 2 showed the best quantitative and qualitative 
performance, since it included all data from the 2018, the 
milder growing season. Selenium application was selected 
as a determinant contributor to Cluster 2, where it was 
associated with about 20% yield increase, consistently on 
all varieties. To date, Selenium is not listed among eligi-
ble microelements in organic agriculture by the Euro-
pean Commission Regulation (EC) No. 889/2008. The 
rationale for including foliar Selenium application in our 
experimental trial relies on scientific evidence of its bene-
ficial effects on plant stress tolerance [25, 46]. Our results 
agree with several authors who reported increases in 
grain yield grown under conventional agronomic systems 
after selenate foliar applications [27, 28, 30, 32], even if 
other authors did not report any significant effect [47–
49]. On the contrary, the absence of beneficial effects of 
Selenium in the drier growing season disagree with stud-
ies conducted under conventional agronomic systems, 
in which late foliar applications of microelements dem-
onstrated to enhance wheat growth parameters under 
drought stress only [50]. To date, the effect of foliar appli-
cations of micronutrients is still controversial [51] and 
requires further experimental insights and a careful case-
by-case evaluation. Any deviation from the correct ratio 
of elements may lead to antagonism phenomena deter-
mining impairment of absorption and transport [52]. The 
decisive yield increase obtained in response to Selenium 
applications in our experiment claims for a more articu-
lated research program. Alternative solutions, doses, and 
timing of applications have to be tested to evaluate the 
inclusion of Selenium in commercial formulations for 
organic agriculture.

Finally, we tested the effect of organic N- and S-based 
foliar fertilization on durum wheat for the first time, even 
if at a low N concentration in the solutions (4% of total 
N). Our choice was driven by the evidence that foliar 
N applications at heading demonstrated to be effec-
tive in improving wheat nutrition [21, 23], being leaves 
more efficient than roots at absorbing nutrients at late 
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development stages [53, 54]. However, the foliar organic 
fertilization did not significantly contribute to explain-
ing the clusters’ difference considering frequency dis-
tribution. These results suggest the need for further 
investigations to develop more effective organic foliar 
fertilizer formulations, particularly with increased N con-
centration. Moreover, recent trends in fertilizer costs, 
along with their scarcity on the international market, 
are shrinking crop yields and food security [55]. This 
situation and the need to foster the sustainability of the 
agricultural farming practices sector must push organic 
fertilizers as an alternative to massive mineral fertilizers.

Conclusion and future studies
The debate regarding the role of organic agriculture 
remains open, particularly when related to food security 
and climate change [8]. We do agree with the idea that 
the conventional and organic systems do not have to 
necessarily be considered competing entities with each 
other nor necessarily be compared in terms of produc-
tivity [8]. However, considering the objective set by the 
European Commission to reach at least 25% of agricul-
tural land in organic farming by 2030, it is crucial to 
investigate agronomic strategies capable of improving the 
productive response of organic systems and, therefore, 
their contribution to food security. This study provides 
practical agronomic information based on experimental 
evidence to support organic farmers in advancing their 
practices to sustain durum wheat yield and quality in the 
Mediterranean. We tested the effects of the main alter-
natives in the hands of farmers, from the varietal choice 
(two ancient and two modern wheat varieties) up to the 
possible foliar applications of nutrients. We then added 
Selenium to evaluate its possible bio-stimulant effect. 
This micro-nutrient, still not listed as an eligible nutri-
ent in organic legislation, demonstrated its efficacy in the 
milder season. The analytic workflow based on multivari-
ate statistical techniques proposed here permitted us to 
identify the most promising combination of agronomic 
practices according to different environmental condi-
tions. Further experiments are needed to shed more light 
on these complex cropping systems, also considering the 
consequences of the adoption of agronomic management 
practices on the socio-economic and environmental 
sustainability.
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