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Abstract 

Background: Rwanda and most parts of sub-Saharan Africa face severe challenges of increasing maize productivity, 
which has direct consequences on food security. Due to these challenges, policy-makers have paid particular atten-
tion to finding the cost-effective strategies of boosting maize production. In an effort to increase productivity, the 
literature suggests that the adoption of yield-enhancing technologies and production efficiency should be given pri-
ority. The objective of this study is to examine and compare the technical efficiency and technological gaps of maize 
farms that grow different seed varieties in Rwanda.

Methods: The data used in this study were obtained from a survey of 360 household farmers conducted in the 
Eastern Province of Rwanda during the 2018–2019 cropping season. The study applies the stochastic meta-frontier 
production function approach to estimate the technical efficiency and technological gaps of maize farms operating 
under heterogeneous production technologies.

Results: Results indicate that there are differences in technical efficiency measures among the three groups of farm-
ers (i.e., adopters of hybrids, open-pollinated varieties, and local maize varieties). In particular, we find that on average, 
farms growing hybrid maize varieties appear to have higher values of technical efficiency, technology gap ratio, and 
meta-frontier technical efficiency than farms growing OPVs and local maize varieties. Thus, the analysis shows that 
there are significant technological and managerial performance gaps among farmers.

Conclusions: From a policy perspective, the results of this study suggest the development of policy measures 
that may reduce the managerial and technological gaps existing among farmers to improve productivity and food 
security. Based on the results of this study, one of the crucial avenues to close this gap would be to improve access 
to improved agricultural technologies such as certified hybrid seeds. Additionally, policies aiming to enhance techni-
cal efficiency and productivity should focus on expanding the delivery of extension services and strengthening the 
technical assistance provided to farmers’ cooperatives.

Keywords: Technical efficiency, Technology gap ratio, Stochastic meta-frontier, Maize production, Maize varieties, 
Rwanda
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Background
Agricultural productivity growth is a critical component 
of the economic development of many African coun-
tries [1]. Particularly in sub-Saharan Africa (SSA), gov-
ernment policy strategies are aimed at improving the 
agricultural productivity which could lead to improved 
household food security and increased farm income [2]. 
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Indeed, given the rapid population growth and poverty in 
SSA, to achieve the objective of household and national 
food security requires a considerable improvement in 
agricultural productivity through the adoption of yield-
enhancing technologies. Meanwhile, empirical literature 
suggests that the rise in the levels of technical efficiency 
(TE) also provides an intuitive solution to the increased 
agricultural productivity growth [1–6]. As noted by Onu-
mah et  al. [7], the improvement in TE is the best and 
cost-effective option to increase agricultural productivity 
for farmers who operate below the efficient frontier.

Given that ensuring food security in developing coun-
tries is the main goal [8], the literature identified the 
improvements in agricultural productivity (i.e., stimu-
lated by government investment in rural infrastruc-
ture, agricultural research and extension, irrigation, and 
appropriate price incentives) as the major elements con-
tributing directly to the economic growth, poverty alle-
viation, and stability [9]. As noted by Timmer [9], each 
of these three elements is in turn a primary input into 
food security at both the macro and micro levels. In gen-
eral, the concept of food security is defined as a situation 
whereby, “all individuals at all times, have physical, social 
and economic access to sufficient, safe and nutritious 
food to meet their dietary needs for an active and healthy 
life" [10]. This concept of food security emphasizes on 
three dimensions, namely, availability, accessibility, and 
utilization of food [10]. In particular, the availability is 
achieved if adequate food is ready to have at people’s dis-
posal (through domestic production or imports), while 
the accessibility is ensured if all individuals have suffi-
cient resources to obtain appropriate food (through pro-
duction, purchase or donation) for a nutritious diet [9, 
10]. Consequently, policy interventions may concentrate 
on improving the technical efficiency and productivity 
to ensure food availability and access dimensions of food 
security.

In Rwanda, agriculture production employs about 75% 
of the labor force [11, 12]. Mainly, crop production con-
tributes about 69% of total national agricultural output 
in Rwanda, with maize accounting for more than 50% 
[11]. Meanwhile, [13] highlighted several factors that 
can explain the predominance of maize in Rwanda rela-
tive to other crops. Those factors include its suitability to 
the Rwandan weather and soil type, and the prevalence 
of maize flour processing facilities influenced the adapta-
tion of many Rwandans to maize diet [13, 14]. In addi-
tion, the crop intensification program (CIP), which was 
introduced by the government of Rwanda in 2007, was 
aimed at promoting maize crop [15]. The input subsidy 
program and the small-scale irrigation technology devel-
opment are the other government interventions that 
are considered to raise maize production and supply in 

Rwanda. Hence, there is a need to investigate the pro-
ductive efficiency of maize farms to provide useful policy 
implications with regards to the improvement of maize 
productivity.

The literature on TE of maize production in Rwanda 
is limited. Moreover, the few studies [16–18] that have 
attempted to analyze the TE of maize, have assumed 
homogeneity in production technology across all farms 
and the estimation of TE used a single production fron-
tier. However, it is necessary to account for heterogeneity 
in production technology that might exist across farms 
operating in different production systems [6, 19, 20]. The 
objective of this study is to examine and compare the TE 
of maize farms that grow different seed varieties using 
the stochastic meta-frontier (SMF) model developed by 
Huang et  al. [21]. In particular, maize varieties adopted 
by farmers in Rwanda are classified into three catego-
ries: hybrids, open-pollinated varieties (OPVs), and local 
varieties. Thus, the SMF approach allows us to generate 
a conventional technology that enables a direct compari-
son of TE across the three groups.

To the best of our knowledge, the literature does not 
comprise any study that has attempted to assess the rela-
tive TE of farms operating under different production 
technologies in Rwanda. Our study contributes to the 
existing literature by demonstrating the application of 
a meta-frontier approach to the estimation of TE levels 
across heterogeneous groups. Indeed, the meta-frontier 
methodology allows us to address the issue of compar-
ing group-specific frontiers with the meta-frontier [22]. 
Additionally, this method can address the technological 
gap (i.e., the difference in the production frontier) that 
might exist across different production systems [20].

The remainder of this paper is organized in the fol-
lowing way. The second section presents an overview 
of the use of maize varieties and productivity growth in 
Rwanda. The third section provides the research method-
ology, followed by a description of the data and variables 
in the fourth section. The fifth section provides a discus-
sion of empirical results. Finally, conclusions and policy 
implications are highlighted in “Conclusion and policy 
implications” section.

A brief description of the Rwandan agrarian 
structure
The Rwandan economy rely heavily on the agriculture 
sector which is still subsistence farming [23]. In Rwanda, 
more than 70% of the population are employed in agri-
culture [23]. Rwanda has a favorable altitude, climate 
and rainfall conditions for agriculture. Though, the 
hilly topography with steep slopes has been conducive 
to depleting soils through rapid runoff of surface water 
and soil erosion [24]. Rwanda has the highest population 
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density as compared to the rest of African countries. 
Rwanda also has the high population growth rates, a 
small average land holdings which is approximately 0.75 
hectares per household, and a high incidence of landless-
ness [23, 25]. Recently, the issue of small-scale farm sizes, 
land fragmentation, and low crop productivity in Rwanda 
remains a priority to policy-makers, research institu-
tions, and nongovernment organizations [26]. Addition-
ally, over the past decades, farmers in Rwanda practiced 
intercropping system of agriculture and cultivated sev-
eral small plots in different parts of the landscape [23]. 
Typically, about 80% of the Rwandan population live in 
rural areas and around 36% of the households own an 
average farm size of roughly 0.11 ha (i.e., 6% of the farm 
lands). 30% of the households own an average farm size 
of roughly 0.6 ha (i.e., 24% of the farm lands), while 24% 
of households own an average farm size of about 2  ha 
(i.e., 70% of the farm lands), in addition, approximately 
10% of the households are landless [27]. The national 
average holding of 0.76 ha is generally divided over 4–5 
small plots, often in multiple locations [27].

In an attempt to achieve food security, the Rwandan 
government has adopted the land consolidation program 
for the purpose of reallocating fragmented small-scale 
farm plots to form large-scale parcels for more rational 
land holding [28]. Furthermore, the key dimension of 
Rwanda’s agrarian policy is to intensify agriculture and 
transform the subsistence farming into a modern and 
commercial agriculture [23]. This policy includes the for-
malization of land tenure, the promotion of intensified 
production of specified marketable crops through use of 
modern inputs, and regional specialization where regions 

concentrate on specific crop combinations depending 
upon the agro-climate in that region [23]. There is also a 
need to foster the capacity building of farmers to ensure 
the adoption of fertilizer and improved seeds. This task 
is undertaken by nine extension service providers who 
assign a proximity extension agent to every 500  ha in 
land use consolidated areas [13].

Overview of maize varieties and productivity growth 
in Rwanda
The importance of maize in food security and economic 
development of Rwanda and many SSA has prompted 
researchers to conduct various studies on the efficiency 
and productivity of this crop. The government of Rwanda 
and its partners have made efforts to enhance maize pro-
duction. Figure  1 indicates that the total maize produc-
tion has tremendously increased in the past two decades. 
The sources of maize production growth in Rwanda is 
mainly due to the expansion of cultivated area [13]. The 
CIP introduced in 2007 by the Ministry of Agriculture 
and Animal Resources (MINAGRI) also contributed to 
the provision of extension services, land use consolida-
tion, input subsidies, and development of small-scale 
irrigation technologies [15]. At the national level, CIP 
conducted pieces of training on the use of fertilizers 
and improved varieties which resulted in the increase of 
crop productivity [13]. However, the adoption rate is still 
meager due to the high cost and lack of awareness of the 
benefits of using recommended fertilizer rates and hybrid 
cultivars [15]. In particular, the use of relatively low qual-
ity of seeds and inappropriate timing of sowing has been 
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broadly cited as the primary source of inefficiency among 
farmers in most developing countries [29].

With regards to the improved maize varieties (IMVs) 
used in Rwanda, there are two broad categories of IMVs, 
including hybrids and OPVs. Hybrid seed variety pro-
duction involves the crossing of two or inbred lines, and 
when the hybrid seed is replanted, it cannot be as pro-
ductive as the original seed [30]. The major hybrid maize 
varieties disseminated in Rwanda include PAN 4M21, 
PAN 53, PAN 67, SC 403, SC 513, SC 529, WH 505, 
WH 507, WH 403, H 513, RHM 104, RHM 1407, RHM 
1402, H 628, H 629, PAN 691, SC 719, and SC 637 [11]. 
On the other hand, OPVs are populations that breeders 
have selected for specific set traits (i.e., no inbred lines or 
parents), and they can usually be replanted up to three 
years without decreasing the yield [31]. The major OPVs 
disseminated in Rwanda include ZM 607, M 101, M 103, 
Pool 9A, and Pool 8A, which are known to be adapted to 
low soil moisture and nutrient conditions.

About the comparison of physiological characteristics 
of the two categories of IMVs, a large body of empirical 
evidence demonstrated that OPVs are generally lower 
yielding than hybrid maize varieties due to the effect of 
heterosis (i.e., hybrid vigor or outbreeding enhancement) 
[32]. Besides, maize hybrids provide higher quality (e.g., 
uniform grain color and size) and offer superior disease 
resistance than OPVs. However, hybrid maize varieties 
are expensive for resource-poor farmers [32]. From both 
agronomic and farmers’ socio-economic context, another 
disadvantage of using hybrid seeds is the difficulty to 
save seeds and produce another generation, because if 
hybrids are replanted in the next season, they cannot be 
as productive as the original seeds [30]. In addition, some 
farmers contend that hybrids are less tasty [32]. Indeed, 
all those dimensions may influence farmers’ decisions to 
adopt hybrids. In Rwanda, despite the government efforts 
to subsidize improved seeds, farmers and their families 
are still engaged in the practices of saving indigenous 
seeds for the next planting season.

Materials and methods
Conceptual framework
The stochastic frontier analysis (SFA) has been exten-
sively used in the agriculture sector to measure the TE 
[29]. The SFA was preferred in many empirical studies 
due to its ability to manage the effect of data noise and 
inefficiency [33].1 However, the limitation of the origi-
nal SFA developed by Aigner et  al. [34] and Meeusen, 
van Den Broeck [35] is the failure to address the issue of 

technological heterogeneity [33]. To address this limita-
tion, economics literature has suggested a meta-frontier 
framework that allows the estimation and comparison of 
TEs of farms operating under different production tech-
nologies [36]. In this study, the production technology 
referred to consist of seed technologies.

The concept of meta-frontier was initially proposed by 
Hayami [37]. In this concept, he assumed that farmers 
have potential access to different production technolo-
gies, and various factors determine the adoption of such 
technologies. Later, Hayami, Ruttan [38] made a fur-
ther assumption that the same production function can 
describe technical possibilities available to farmers classi-
fied into different groups. Battese, Rao [39] extended the 
meta-frontier approach and introduced a SMF produc-
tion function that allows the estimation of TEs of firms 
classified into different groups. This method was further 
extended by Battese et al. [40] and O’Donnell et al. [41] 
to be a two-stage procedure for the estimation of meta-
frontier. The first stage of this approach uses the SFA 
model to estimate the individual frontiers for each group. 
In the second stage, a mathematical programming tech-
nique, such as Data Envelopment Analysis (DEA) is used 
to estimate the meta-frontier by combining the group-
specific stochastic production functions [22]. However, a 
potential limitation of this method lies in the estimation 
of the second stage, in which the meta-frontier estima-
tors lack desirable statistical properties due to the deter-
ministic nature of mathematical programming [22]. In 
addition, mathematical programming methods cannot 
separate the idiosyncratic shocks from the model; hence, 
the estimation results are susceptible to random noise [2, 
22].

Due to the limitation of the second stage in the SMF 
developed by Battese et al. [40] and O’Donnell et al. [41], 
Huang et  al. [21] proposed a SMF model that uses SFA 
to estimate meta-frontier parameters in the second stage 
rather than mathematical programming methods. Huang 
et al. [21] contend that the SFA approach can address the 
issue of statistical noise and provides desirable statistical 
properties of the parameters in the estimation of meta-
frontier. Moreover, the SMF approach of Huang et  al. 
[21] uses the maximum likelihood estimation (MLE), 
which allows the computation of statistical inferences 
without the need to depend on simulations or bootstrap-
ping methods [22]. Huang et al. [21] assert that the SMF 
approach can estimate the technology gap ratios (TGRs) 
directly.

Since the SMF approach provides appropriate statisti-
cal properties for inference and can isolate TGRs from 
random shocks which allows TGR to be expressed as a 
function of exogenous environmental variables [2], we 

1 The data noise can be caused by random factors such as adverse weather 
conditions and measurement errors.
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use the SMF approach developed by Huang et al. [21] in 
this study.

Stochastic meta‑frontier specification
Following Huang et al. [21], the SMF model used to esti-
mate the TE of farms adopting different technologies, is 
specified in a two-step procedure. In the first step, indi-
vidual group frontiers are estimated, while in the second 
step, stochastic frontier methods are applied to estimate 
the meta-frontier production function. The stochastic 
production function for the ith farmer is expressed as 

 where Yji represents the output of the ith farmer in the 
jth group; Xji represents a vector of inputs of the ith 
farmer in the jth group; β j is a vector of unknown param-
eters to be estimated for the jth group. Moreover, Vji is a 
random error component that represents the statistical 
noise and is assumed to be identically and independently 
distributed with mean as 0 and constant variance as [
Vji ∼ N

(
0, σ

j2
v

)]
 . The non-negative random errors Uji 

represent the technical inefficiency of the ith farmer in 
the jth group. Uji follows a truncated normal distribution 
and is defined as Uji ∼ N+

(
δjZji, σ

j2
)
 , where Zji repre-

sents a vector of exogenous variables associated with the 
technical inefficiency of the ith farmer in the jth group; δj 
is a vector of unknown parameters to be estimated.

The TE of the ith farmer in jth group is specified as the 
ratio of actual output to the maximum output possible:

As suggested by Huang et  al. [21], the meta-frontier 
production function f M

(
Xji

)
 that envelops the three 

group-specific frontiers f j
(
Xji

)
 is defined by the follow-

ing relationship:

where UM
ji ≥ 0 , suggesting that f M(•) ≥ f j(•) and 

the TGR which is computed as the ratio of the frontier 
production function for the jth group relative to the 
meta-frontier:

Following Huang et al. [21], for given levels of inputs, 
the observed output of the ith farmer with respect to the 
meta-frontier function, adjusted for the corresponding 
random error is defined as:

(1)
Yji = f j

(
Xji;β

j
)
eVji−Uji , i = 1, 2, . . . ,Nj; j = 1, 2, . . . , J

(2)TE
j
i =

Yji

f j
(
Xji

)
eVji

= e−Uji .

(3)f j
(
Xji

)
= f M

(
Xji

)
e
−UM

ji , ∀j, i

(4)TGR
j
i =

f j
(
Xji

)

f M
(
Xji

) = e
−UM

ji ≤ 1

In the above, it is important to note that though TGRj
i 

and TEj
i are bounded between 0 and 1, the meta-fron-

tier function does not certainly envelope all farmers’ 
observed outputs due to random noise [22]. Indeed, the 
unrestricted ratio given in Eq.  (5) differentiates the use 
of the SFA method with mathematical programming 
to model the meta-frontier. Accordingly, given that the 
random noise component is obtained from the SFA, the 
TE of the ith farmer with respect to the meta-frontier, is 
expressed as:

The meta-frontier production function in Eq.  (3) was 
specified using mathematical programming methods 
proposed by O’Donnell et  al. [41]. However, due to the 
limitations of this approach highlighted earlier, we can 
reformulate Eq.  (3) using the methodology proposed by 
Huang et al. [21]:

Here, the individual group frontier f j
(
Xji

)
 is unobserv-

able. Still its values can be estimated from the first step, 
and as the fitted values of f j

(
Xji

)
 differ from the actual 

frontier, Eq. (7) can be redefined as:

where VM
ji  denotes a symmetric noise that represents the 

deviation between the fitted values f̂ j
(
Xji

)
 and the true 

frontier f j
(
Xji

)
 . That is,

where the error term VM
ji  is typically distributed as 

N
(
0, σM2

v

)
 while the non-negative technology gap com-

ponent UM
ji ≥ 0 is assumed to be distributed as truncated 

normal, i.e., UM
ji ∼ N+

(
µM

(
Zji

)
, σM2

)
 , where Zji repre-

sents the production environment variable vector.
Equation  (8) holds the resemblance with the conven-

tional stochastic frontier model, and in consequence, 
lnfM

(
Xji

)
+ VM

ji  is referred to as the SMF model. Usually, 
this model is performed using the maximum likelihood 
estimation, and the parameter estimates are consistent 
and asymptotically normally distributed [22]. The SMF 
model allows for the estimated group-specific frontier 
to be larger than or equal to the meta-frontier due to 
statistical noise. However, the meta-frontier should be 
larger than or equal to the group-specific frontier, i.e., 

(5)
Yji

f M
(
Xji

) = TGR
j
i × TE

j
i × eVji .

(6)MTEji =
Yji

f M
(
Xji

)
eVji

= TGR
j
i × TE

j
i.

(7)lnf j
(
Xji

)
= lnfM

(
Xji

)
− UM

ji .

(8)lnf̂ j
(
Xji

)
= lnfM

(
Xji

)
− UM

ji + VM
ji ,

(9)VM
ji = lnf̂ j

(
Xji

)
− f j

(
Xji

)
,
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f M
(
Xji

)
≥ f j

(
Xji

)
 [22]. Therefore, the estimated TGR is 

calculated as:

where ε̂Mji = lnf̂ j
(
Xji

)
− lnf̂M

(
Xji

)
 is the estimated com-

posite residual of Eq. (8).

Functional form specification
Cobb–Douglas and translog functional forms are the 
most commonly applied in efficiency analysis. In this 
study, we use the Cobb–Douglas functional form to 
estimate both group-specific stochastic frontier and 
stochastic meta-frontier parameters. The choice of 
Cobb–Douglas is based on the results of the likelihood 
ratio test. The value of the likelihood ratio test statistic is 
about 6.21 leading to the acceptance of the null hypoth-
esis stating that Cobb–Douglas functional form is the 
appropriate representation of the data relative to the 
translog functional form.2 The Cobb–Douglas functional 
form is specified as follows:

where Yi represents the maize output of the ith farmer; 
Xji represents the quantity of the jth input used by the ith 
farmer; β denotes a vector of unknown parameters to be 
estimated; vi is the random error term and ui is the non-
negative inefficient term. Following Battese, Coelli [43], 
the inefficiency effects model can be written as:

where Zji denotes a vector of farmer-specific variables 
that might influence the TE.

Data and variables
The data used in this study are cross-sectional data from 
a household survey conducted in the Eastern Province 
of Rwanda from July to August 2019. A representative 
sample of this study consists of 360 household farmers 
that were randomly selected from three districts, namely 
Bugesera, Kirehe, and Nyagatare districts of the Eastern 
Province of Rwanda. This sample was drawn using a mul-
tistage sampling technique. First, in consultation with 

(10)TĜR
j

i = Ê
(
e
−UM

ji |ε̂Mji

)
≤ 1,

(11)ln(Yi) = β0 +
∑4

j=1
βjlnXji + (vi − ui)

(12)µi = δ0 +

10∑

j=1

δjZji,

the MINAGRI, three districts were purposively selected 
based on their intensive maize production. In the sec-
ond stage, four administrative sectors were randomly 
selected from each district. Finally, a simple random sam-
pling technique was used to select a total of 360 maize 
farmers. Respondents were interviewed using a struc-
tured questionnaire by trained and experienced research 
assistants. The survey collected detailed information on 
maize production output, and inputs used in the produc-
tion process during the 2018–2019 crop season. Besides, 
information on socio-economic characteristics of house-
holds, institutional, and farm-specific characteristics 
were also collected. For the purpose of this study, each 
farmer was asked about the type of maize seed variety 
planted during the 2018–2019 cropping season to clas-
sify farmers into three groups (i.e., adopters of hybrids, 
OPVs, and local seeds).

All variables used in the analysis are presented in 
Table 1. As regards to the inputs used in maize produc-
tion, four variables are included in our model: land, labor, 
fertilizer, and seeds. The land input is measured as the 
total farm size in hectares (ha) planted with maize dur-
ing the 2018–2019 crop season. Labor input (i.e., hired 
and family labor) used to perform all farm operations 
during the 2018–2019 crop season is measured in per-
son-days per ha. Particularly in SSA countries, the labor 
force consists of men, women, and children. Hence, fol-
lowing Khataza et  al. [45], labor is defined in terms of 
adult equivalent units using the following conversion 
factors: one adult male (at least 15 years of age, working 
on a full day-basis) represents one person-day. While an 
adult female working on a full day-basis represents 0.8 
person-days, and one child (5–14 years) working for a full 
day represents 0.5 person-days [45, 46]. Fertilizer input 
is measured as the total quantity of di-ammonium phos-
phate (DAP) and urea in kilograms (kg) per ha applied on 
the farm during the 2018–2019 crop season. Seed input 
is expressed as the quantity in kg per ha of maize seeds 
used in farm production during the 2018–2019 cropping 
season.

The household, institutional, and farm charac-
teristics used in the analysis as the determinants of 
technical inefficiency are also presented in Table  1. 
Household demographic variables such as age, edu-
cation, household size, and gender may influence the 
TE. For instance, higher education levels are expected 
to improve farmers’ managerial performance, which 
could also enhance their TE’s level [46, 47]. A dummy 
variable for cooperative membership is included to 
assess the effect of cooperatives on TE. Based on the 
empirical evidence from previous studies [42, 48–50], 
we expect the participation in farmers’ cooperatives 
to have a positive effect on TE. Other institutional 

2 Although the Cobb–Douglas imposes restrictions on partial production 
elasticities and returns to scale to take the same value across all observations, 
it provides satisfactory parameter estimates than the translog. It is also more 
consistent with the production economic theory. Besides, inputs and interac-
tion terms in a translog functional form are likely to have the problem of mul-
ticollinearity [42].
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factors, such as extension services and access to 
credit, are considered essential determinants of farm 
TE, and they are both expected to be positively cor-
related with TE. The variable slope is expressed as a 
dummy variable equal to one if the farm is located on 
a steep hill and zero otherwise. Typically, the slope is 

expected to be negatively correlated with the TE due 
to the evidence that steep slopes tend to face prob-
lems related to irrigation development, mechaniza-
tion, and soil erosion [46]. The remaining explanatory 
variables are land tenure, off-farm income, and live-
stock ownership.

Table 1 Description of variables used in the analysis

TLU across various categories of livestock are computed as; 0.7 for cows; 0.45 for Heifers; 0.1 for goats; 0.1 for sheep; 0.01 for chicken; 0.2 for Pigs [44]

Variables Definition

Output Total maize production per ha (kg per ha)

Land Total land size planted with maize crop (ha)

Labor Labor input including both hired and family labor (person-days per ha)

Fertilizer Quantity of fertilizer used (kg per ha)

Seed Amount of seeds used (kg per ha)

Age Age of household head (years)

Gender Dummy variable equal to 1 if the household head is male, 0 otherwise

Education Number of years of formal education

Household size Total household size (number of persons)

Coop. membership Dummy variable for cooperative membership equal to 1 if a farmer is a member of the 
cooperative, 0 otherwise

Extension services The frequency of extension visits (number per year)

Credit access Dummy variable for credit access equal to 1 if a farmer has access to credit, 0 otherwise

Off-farm Income Dummy variable equal to 1 if a farmer has other sources of income off-farm, 0 otherwise

Land tenure Dummy variable for land tenure equal to 1 if a farmer owns the land, 0 if rented

Slope Dummy variable for slope equal to 1 if the land is characterized by steep slopes, 0 otherwise

Livestock ownership Amount of livestock owned in tropical livestock units (TLU)

Table 2 Descriptive statistics of the data

Variable Local varieties OPVs Hybrids Pooled sample

Mean Std. dev Mean Std. dev Mean Std. dev Mean Std. dev

Yield 1767.87 219.56 1985.99 230.48 2307.52 266.12 1990.69 293.56

Land 1.17 0.63 1.75 0.85 2.23 0.99 1.69 0.90

Labor 21.39 5.01 23.12 4.11 26.13 4.27 23.24 4.63

Fertilizer 104.67 32.19 125.52 28.19 147.74 35.98 124.38 33.82

Seed 29.47 7.47 31.49 6.47 34.50 8.33 31.54 7.27

Age 44.13 12.03 46.99 10.17 50.46 8.78 46.91 10.61

Gender 0.57 0.49 0.70 0.46 0.82 0.39 0.69 0.46

Education 4.23 1.78 5.77 2.12 8.09 2.85 5.81 2.53

Household size 5.94 1.72 6.83 1.57 7.22 1.42 6.68 1.64

Coop. membership 0.27 0.45 0.55 0.50 0.67 0.47 0.50 0.50

Extension services 26.76 6.97 31.02 7.22 35.81 8.02 30.83 7.88

Land tenure 0.49 0.50 0.48 0.50 0.61 0.49 0.51 0.50

Credit access 0.30 0.46 0.57 0.49 0.52 0.50 0.49 0.50

Off-farm income 0.35 0.48 0.36 0.48 0.46 0.50 0.37 0.48

Slope 0.71 0.45 0.50 0.50 0.21 0.41 0.50 0.50

Livestock ownership 0.62 0.66 1.36 0.97 2.39 1.27 1.37 1.13

No. of observations 91 202 67 360
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Summary statistics
Table  2 illustrates the mean values and standard devia-
tions of all variables used in this study. The summary 
statistics given in Table 2 indicate that there are consider-
able differences in output, inputs, and household charac-
teristics among the three groups of farmers using hybrid, 
OPVs, and local maize varieties. Farms growing hybrid 
maize varieties recorded the highest average maize out-
put per hectare (2307.52 kg/ha), while the farms growing 
local varieties recorded the lowest average maize output 
per hectare (1767.87  kg/ha). With regards to the farm 
inputs, on average, farms growing hybrid maize varieties 
used a higher amount of fertilizers (147.74 kg/ha) relative 
to farms growing OPVs (125.52  kg/ha) and local maize 
varieties (104.67  kg/ha). Similarly, on average, farms 
growing hybrid maize varieties used a higher amount of 
seeds (34.50  kg/ha) compared to farms growing OPVs 
(31.49 kg/ha) and local maize varieties (29.47 kg/ha). In 
terms of the amount of labor employed, farms growing 
hybrid maize varieties engaged labor more intensively 
than farms growing OPVs and local maize varieties. In 
addition, the land allocated to maize production is about 
2.23, 1.75, and 1.17 hectares for farms growing hybrid, 
OPVs, and local maize varieties, respectively.

In terms of socio-economic characteristics of farmers, 
Table 2 indicates that, on average, the age of farmers in 
the sample is approximately 47  years old, and the level 
of formal education is around 6 years of primary school. 
Table 2 also indicates that, on average, 69% of households 
in the sample are male-headed. In particular, farmers 
who planted hybrid maize varieties appear to be older 
and more educated than farmers who planted OPVs and 
local maize varieties. Moreover, farmers who planted 
hybrid maize varieties appear to have better access to 
extension services and credit facilities than farmers who 
planted OPVs and local maize varieties. The proportion 
of farmers who are members of agricultural coopera-
tives is higher for those who planted hybrid maize vari-
eties. With regards to livestock ownership, producers 
who planted hybrid maize varieties own more livestock 
than the producers who planted OPVs and local maize 
varieties.

Empirical results and discussion
In this section, we present the specification tests and 
the maximum likelihood estimates of the group-spe-
cific stochastic production frontier model. The param-
eter estimates of the stochastic meta-frontier production 
function are also presented in this section. Finally, sum-
mary statistics of TE scores by individual group frontier; 
TE scores from the meta-frontier; and the TGR for maize 
farmers are reported and discussed.

Model specification tests
The generalized likelihood ratio test is used to spec-
ify the adequacy of a functional form used and check 
the presence of technical inefficiency. Moreover, 
the likelihood ratio test is used to evaluate the rel-
evance of estimating the meta-frontier model. The 
likelihood ratio test statistic, which is computed as, 
� = −2

{
ln[Likelihood(H0)]− ln[Likelihood(H1)]

}
 has 

a chi-squared ( χ2 ) distribution with the degrees of free-
dom equal to the difference between the number of 
parameters estimated under alternative hypothesis and 
the null hypothesis [51].

The first test involves a null hypothesis, which assumes 
that there is no technical inefficiency in maize produc-
tion for all three individual groups of farmers. This null 
hypothesis is strongly rejected at the 1% level of signifi-
cance for all the three models (see Table  3), confirming 
the presence of technical inefficiency in maize produc-
tion for all groups of farmers (i.e., adopters of hybrid, 
OPVs, and local maize varieties). The null hypothesis of 
the second test assumes that the explanatory variables 
included in the inefficiency effects model have a zero 
joint influence on the level of technical inefficiency. The 
findings from Table  3 indicate that this null hypothesis 
is firmly rejected at the 1% level of significance, imply-
ing that explanatory variables have a significant effect on 
the variation in the level of technical inefficiency is sta-
tistically significant for all group-specific frontier models. 
With regards to the specification of the function form, 
the null hypothesis assuming that the Cobb–Douglas 
production functional form provides a better fit for the 
data than the translog functional form was accepted for 
all the group-specific frontiers and the pooled sample.

The fourth test for this study is conducted to examine 
whether the three groups of farmers (i.e., adopters of 
hybrid, OPVs, and local maize varieties) share the same 
production technology. It would not be necessary to esti-
mate the TE relative to a meta-frontier production model 
if all the individual group frontiers have a common pro-
duction technology [40]. In particular, the likelihood 
ratio test of the null hypothesis that all three groups of 
farmers have the same production technology is com-
puted after estimating the stochastic frontier for the full 
sample. Findings strongly reject this null hypothesis at 
the 1% level of significance, implying that there are sig-
nificant differences among the three individual group 
frontiers (i.e., farmers operate under heterogeneous pro-
duction technologies). Thus, it is necessary to use the 
meta-frontier approach to estimate and compare the TE 
levels of maize farms that grow different seed varieties.

The endogeneity test was also performed using the 
method of Karakaplan, Kutlu [52] which rely on similar 
ideas with the Durbin and Wu-Hausman test. This test 
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is typically carried out by testing the joint significance of 
the components of η term [52, 53]. If η is jointly signifi-
cant, we would confirm the presence of endogeneity in 
our model. On the other hand, if η is not jointly signifi-
cant, we would conclude that the correction term is not 
necessary and the efficiency can be estimated using the 
traditional stochastic frontier models [52–54]. As shown 
in Table 4, the calculated test statistic is about 7.12 with 
a greater p value (0.214), i.e., the components of η are not 
jointly significant, which accept the null hypothesis of no 
endogeneity in our model. Consequently, the correction 
term is not necessary and we can estimate the efficiency 
using the traditional stochastic frontier models.

Estimates of group‑specific frontiers
As explained above in the methodology section, we 
employ a two-step stochastic meta-frontier approach 
proposed by Huang et al. [21] to estimate the TE of maize 
farms that grow different seed varieties. In the first step, 
group-specific stochastic frontiers are estimated, and the 
results are presented in Table 4. In this step, the SFA is 
used to estimate Eqs.  (11) and (12). The results given in 
Table 4 show that for the production function, the coef-
ficients of all variable inputs are statistically significant 
and have positive signs as expected. Given that we have 
used the Cobb–Douglas production function, the esti-
mated coefficients of inputs are directly read as the par-
tial production elasticities. For all groups of farmers, the 

output is most responsive to fertilizer input variable rela-
tive to other production input variables (i.e., labor, seed, 
and land). Notably, the magnitudes of the coefficients are 
higher (except for labor input variable) for farms growing 
hybrid maize varieties compared to farms growing OPVs 
and local maize varieties.

The estimated lambda parameter ( � ) suggests that 
there is a presence of technical inefficiency in maize 
production in all three groups of farmers.3 In terms of 
examining the determinants of technical inefficiency, 
we present the parameter estimates of relevant vari-
ables in Table  4. Variables such as household size and 
off-farm income are not statistically significant in any 
of the three groups of farmers. The remaining vari-
ables included in the inefficiency effects model appear 
to be statistically significant, at least in one of the three 
groups of farmers and have the expected signs.4 In 
particular, education and the availability of extension 
services have a positive effect on TE for all the farm-
ers’ groups, which was expected a priori. Mariano et al. 
[20] argued that these human capital variables influ-
ence farmers’ managerial performance. Another inter-
esting finding indicates that membership in farmers’ 

Table 3 Results of hypotheses testing

a H0 : No endogeneity in the model, decision: do not reject  H0

Null hypothesis LR statistic (λ) Degree of freedom p value Critical value (χ2, 
0.05)

Decision

1. H0 : γ = 0

 Local varieties 6.90 1 0.007 3.84 Reject  H0

 OPVs 9.32 1 0.000 3.84 Reject  H0

 Hybrids 8.65 1 0.002 3.84 Reject  H0

 Pooled sample 10.62 1 0.001 3.84 Reject  H0

2. H0 : δ1 = δ2 = · · · = δ10 = 0

 Local varieties 29.07 10 0.014 18.30 Reject  H0

 OPVs 30.30 10 0.001 18.30 Reject  H0

 Hybrids 28.66 10 0.022 18.30 Reject  H0

 Pooled sample 49.31 10 0.000 18.30 Reject  H0

3. H0 : βik = 0

 Local varieties 5.95 10 0.306 18.30 Do not reject  H0

 OPVs 6.16 10 0.143 18.30 Do not reject  H0

 Hybrids 6.02 10 0.250 18.30 Do not reject  H0

 Pooled sample 6.21 10 0.515 18.30 Do not reject  H0

4. All individual groups share the 
same technology

61.34 37 0.008 55.75 Reject  H0

 Eta ( η ) endogeneity test—
(
χ2

= 7.12
)
a; p = 0.214

3 The lambda parameter ( � ) indicates the presence of inefficiency effect with 
respect to the random noise if it is statistically significant.
4 The negative (positive) sign of a parameter implies that the variable has a 
positive (negative) effect on TE.
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cooperatives is positively associated with TE for only 
farmers who planted hybrid maize varieties. A plausible 
explanation for this finding is that farmers’ cooperatives 
in the study area which are crop-specific, play a signifi-
cant role in facilitating farmers to get inputs and tech-
nical backstopping services during the cropping season. 
Undoubtedly, these inputs and technical services have 
direct links with yield and technical efficiency gains, 
which jointly indicate significant potential for improved 
smallholder livelihoods [42]. On the other hand, this 
variable is not statistically significant for farmers who 
planted OPVs and local maize varieties.

The resource ownership variables such as livestock 
and land were found to have a significantly positive 
effect on TE of farmers for all the groups, as expected. 
Similar findings were also found by Ng’ombe [2] on TE 
of smallholder maize production in different regions 
of Zambia. The access to credit also appears to have a 
positive effect on TE of farmers, except for farmers who 
planted local maize varieties.

Results of meta‑frontier estimation
To estimate the stochastic meta-frontier production 
function, we calculated the fitted values for each group, 
i.e., lnf̂ j

(
Xji

)
 in Eq.  (8). The parameter estimates of the 

stochastic meta-frontier production function are given 
in Table  5. The results listed in Table  5 indicate that 
all parameter estimates are statistically significant and 
have the expected signs. This implies that land, labor, 
fertilizer, and seed variable inputs play an important 
role in influencing the technology gap ratio. Concern-
ing the environmental variables, we use the dummy 
variable for slope, which is equal to 1 if the land is 
characterized by steep hills and 0 otherwise. As shown 
in Table  2, the descriptive statistics show that 50% of 
farmers in our sample have a sloped land terrain. The 
slope’s significantly positive coefficient implies that 
the production frontier of farmland, characterized by 
steep slopes, is likely to be further away from the meta-
frontier. This finding corroborates the findings of Julien 
et  al. [46], who found a negative relationship between 

Table 4 Maximum likelihood estimates of group-specific stochastic production frontier model

***, **, and * Statistical significance at the 1%, 5%, and 10% levels, respectively

Variable Parameter Local varieties OPVs Hybrids Pooled sample

Coefficient std. error Coefficient std. error Coefficient std. error Coefficient std. error

Production frontier

 Constant β0 5.535** 0.091 5.462* 0.126 5.637** 0.118 5.610** 0.094

 lnland β1 0.106** 0.018 0.105*** 0.006 0.113** 0.011 0.105*** 0.007

 lnlabor β2 0.142*** 0.024 0.171** 0.017 0.168** 0.019 0.156** 0.020

 lnfertilizer β3 0.201* 0.106 0.209*** 0.032 0.237*** 0.021 0.206*** 0.014

 lnseed β4 0.128** 0.035 0.138*** 0.021 0.166* 0.047 0.135*** 0.017

Socio-economic variables

 Constant δ0 − 2.379 0.152 − 2.794*** 0.054 − 2.984** 0.083 − 2.781*** 0.061

 Age δ1 0.003* 0.010 0.007 0.009 − 0.031 0.015 0.002 0.006

 Gender δ2 − 0.795** 0.249 − 0.728*** 0.233 − 0.647*** 0.220 − 0.737*** 0.224

 Education δ3 − 0.151*** 0.048 − 0.334** 0.084 − 0.428* 0.131 − 0.237*** 0.060

 Household size δ4 − 0.068 0.065 − 0.032 0.052 0.074 0.214 − 0.035 0.057

 Coop. membership δ5 − 0.144 0.311 − 0.152 0.339 − 0.313* 0.384 − 0.153 0.376

 Extension services δ6 − 0.135* 0.022 − 0.021*** 0.011 − 0.019** 0.009 − 0.027** 0.013

 Credit access δ7 0.192 0.047 − 0.354** 0.097 − 0.213*** 0.030 − 0.272*** 0.029

 Off− farm income δ8 − 0.144 0.141 − 0.275 0.406 0.310 0.513 − 0.112 0.112

 Land tenure δ9 − 0.326*** 0.317 − 0.352** 0.109 − 0.285*** 0.116 − 0.302** 0.129

 Livestock ownership δ10 − 0.801** 0.123 − 0.723*** 0.065 − 0.476** 0.155 − 0.716*** 0.086

Model diagnostics

 Sigma− u σu 0.127*** 0.011 0.132*** 0.009 0.122*** 0.020 0.111*** 0.013

 Sigma− v σv 0.094*** 0.013 0.079*** 0.008 0.105** 0.009 0.064*** 0.006

 Variance σ 2 0.025*** 0.002 0.024*** 0.003 0.026** 0.001 0.016*** 0.002

 Lambda � 1.351*** 0.075 1.671*** 0.104 1.162*** 0.022 1.718*** 0.018

 Log likelihood function LLF − 416.351 − 313.237 − 504.115 − 348.808

 No. of observations 91 202 67 360
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slope and farm performance (i.e., technical efficiency) 
in Malawi, Tanzania, and Uganda.

Estimation and comparison of technical efficiency levels
The estimates of TE scores with respect to the group fron-
tiers, the MTE, and the TGR are presented in Table 6. In 
terms of the measures of TE relative to the group-specific 
production frontiers, the results given in Table 6 indicate 

that farms growing hybrid maize varieties appear to have 
a higher level of TE (71.8%) than farms growing OPVs 
(67%) and local maize varieties (59.2%). However, these 
estimates cannot be used to compare the managerial per-
formance (i.e., technical efficiency) of maize farmers in 
three individual groups using different maize varieties. 
In “Model specification tests” section above, we demon-
strated that there are significant differences among the 
three individual group frontiers (i.e., farmers operate 
under heterogeneous production technologies). Thus, it 
is necessary to use the meta-frontier approach to com-
pare the managerial performance of maize farmers who 
grow different maize varieties. In this regard, we used the 
MTE and TGR estimates obtained from the specification 
of Eqs. (4) and (6).

The results listed in Table 6 show that the mean TGR 
of farms growing hybrid maize varieties (80.1%) is higher 
than the mean TGR of farms growing OPVs (75.2%) and 
local maize varieties (61.5%). This implies that, on aver-
age, farms growing hybrid maize varieties produce about 
80.1% of the maximum output that can be obtained using 
the available production technology in Rwanda. Farms 
growing OPVs produce roughly 75.2% of the potential 
output. On the other hand, farms growing local maize 
varieties produce approximately 61.5% of the possi-
ble output given the available production technology in 
Rwanda. The difference in mean TGRs between adopters 
of hybrids and local seeds is statistically significant at 5% 
(t value = 132.814). These results imply that farms grow-
ing hybrid maize varieties performs better than farms 
growing OPVs and local maize varieties. Villano et  al. 
[29] noted a significant gaps in managerial performance 
of farmers using different seed varieties in rice produc-
tion in the Philippines.

Regarding the estimated MTE values, the results given 
in Table 6 show that farms growing hybrid maize varie-
ties recorded the highest mean TE score for the meta-
frontier function (65.1%) followed by farms growing 
OPVs (59.4%). Farms growing local maize varieties have 
the lowest mean TE score relative to the meta-frontier 
function (48.3%). Generally, we note that there are sig-
nificant differences in the mean values of TE, TGR, and 
MTE across the three individual group frontiers, indicat-
ing the gaps in managerial performance among farmers.

Conclusion and policy implications
Rwanda and most parts of sub-Saharan Africa face severe 
challenges of increasing maize productivity, which has 
direct consequences on food security. These challenges 
have led to public policies focusing on finding the cost-
effective strategies of boosting maize production. In this 
study, we applied the stochastic meta-frontier approach 
to estimate and compare the TE and technology gaps of 

Table 5 Parameter estimates of  the  stochastic meta-
frontier production function

***, **, and * Statistical significance at 1%, 5%, and 10% levels, respectively

Variable Parameter Coefficient Standard error

Production frontier

 Constant β0 5.343*** 0.062

 lnLand β1 0.127*** 0.006

 lnLabor β2 0.149** 0.011

 lnFertilizer β3 0.252** 0.007

 lnSeed β4 0.139*** 0.005

Environmental variables

 Constant δ0 − 3.543*** 0.057

  Slope δ1 0.601*** 0.160

Variance parameters

 Sigma-u σu 0.124*** 0.046

 Sigma-v σv 0.025*** 0.003

 Variance σ 2 0.016*** 0.005

 Lambda � 4.961*** 0.009

 Log likelihood function − 677.523

Total number of observation 360

Table 6 Summary statistics of  various measures of  TE 
for maize farmers

Range of TE (%) Mean Std. dev Minimum Maximum

Local varieties

 Group-specific TE 0.592 0.052 0.360 0.674

 Meta-frontier TE 0.483 0.044 0.357 0.809

 TGR 0.615 0.035 0.488 0.811

OPVs

 Group-specific TE 0.670 0.040 0.376 0.835

 Meta-frontier TE 0.594 0.039 0.365 0.864

 TGR 0.752 0.032 0.523 0.870

Hybrids

 Group-specific TE 0.718 0.033 0.403 0.896

 Meta-frontier TE 0.651 0.040 0.348 0.877

 TGR 0.801 0.028 0.590 0.901

Pooled sample

 Group-specific TE 0.663 0.039 0.360 0.896

 Meta-frontier TE 0.580 0.047 0.348 0.877

 TGR 0.728 0.031 0.488 0.901
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maize farms that grow different seed varieties in Rwanda. 
Data were obtained from a household survey carried 
out in Rwanda during the 2018–2019 cropping season. 
The sample size is about 360 household farmers who 
were randomly selected from three districts of the East-
ern Province of Rwanda. The hypothesis tests confirmed 
that maize farmers in our sample operate under hetero-
geneous production technologies. This result justifies the 
need to use the meta-frontier approach to estimate and 
compare the TE levels of maize farms that grow different 
seed varieties.

Our results also show the significant role of variables 
such as land, labor, fertilizer, and seed in influencing the 
TE and technology gap ratio. Regarding the factors that 
determine the inefficient component, we find that educa-
tion and extension services have a positive effect on TE 
for all the farmers’ groups, which, as expected. Member-
ship in farmers’ cooperatives also has a positive impact 
on TE for farmers who planted hybrid maize varieties. 
These findings suggest that policies aiming to enhance 
the level of TE and productivity should focus on expand-
ing the delivery of extension services and strengthening 
the technical assistance provided to farmers’ coopera-
tives. The TE measures obtained from both the group-
specific frontiers and the meta-frontier indicate that 
maize farms in all groups operate below the frontier, 
which implies a scope to achieve the maximum poten-
tial output possible using the current level of inputs and 
technology.

The results obtained from the meta-frontier estima-
tion confirm significant differences in the mean values 
TE, TGR, and MTE across the three individual group 
frontiers, indicating the gaps in managerial performance 
among farmers. From a policy perspective, these findings 
suggest the development of policy measures that may 
reduce the managerial and technological gaps existing 
among farmers to improve productivity and food secu-
rity. Based on the results of this study, one of the crucial 
avenues to close this gap would be to improve access to 
improved agricultural technologies such as improved 
hybrid seeds. Finally, given that this study is the first to 
examine the relative TE of farms operating under dif-
ferent production technologies in Rwanda, we admit 
some limitations are worth mentioning. Future research 
should consider using panel data to provide results of 
more excellent value. Moreover, studies covering various 
crops and more conventional inputs are worthy of future 
research.
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