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Abstract 

Background  Soil is a basic natural resource for the existence of life on earth, and its health is a major concern for 
rural livelihoods. Poor soil health is directly associated with reduced agricultural land productivity in many sub-
Saharan countries, such as Mali. Agricultural land is subjected to immense degradation and the loss of important soil 
nutrients due to soil erosion. The objective of the study was to diagnose the spatial distribution of soil erosion and 
soil nutrient variations under different land use in two agroecological zones of Southern Mali using the Geographical 
Information System (GIS) software, the empirically derived relationship of the Revised Universal Soil Loss Equation, 
in-situ soil data measurement and satellite products. The soil erosion effect on agricultural land productivity was dis-
cussed to highlight the usefulness of soil and water conservation practices in Southern Mali.

Results  The results of the land use and land cover change analysis from 2015 to 2019 revealed significant area 
reductions in water bodies, bare land, and savanna woodland for the benefit of increased natural vegetation and 
agricultural land. There was significant variation in the annual soil loss under the different land use conditions. Despite 
recordings of the lowest soil erosion rates in the majority of the landscape (71%) as a result of field-based soil and 
water conservation practices, the highest rates of erosion were seen in agricultural fields, resulting in a reduction in 
agricultural land area and a loss of nutrients that are useful for plant growth. Spatial nutrient modelling and map-
ping revealed a high deficiency and significant variations (p < 0.05) in nitrogen (N), phosphorus (P), potassium (K), and 
carbon (C) in all land use and land cover types for the two agroecologies.

Conclusions  The study highlighted the inadequacies of existing field-based soil and water conservation practices to 
reduce soil erosion and improve landscape management practices. The findings of the study can inform land man-
agement planners and other development actors to strategize and prioritize landscape-based intervention practices 
and protect catchment areas from severe erosion for the enhanced productivity of agricultural fields.
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Background
Landscape patterns determine the physiographic charac-
teristics that affect the rate of soil loss from agricultural 
fields. Land use and land cover play a major role in the 
soil nutrient cycle, specifically regarding the sources and 
sinks of carbon [1]. Studying their changes at any scale is 
critical to assess the impact of anthropogenic and natu-
ral changes on soil properties. Remote sensing data have 
been widely used for monitoring land use and land cover 
changes, and their use in combination with ground meas-
urements provides a highly accurate view of the Earth’s 
components, such as landscapes and hydrospheres [2]. 
Land use and land cover have detrimental effects on run-
off and soil physical and chemical properties and hence 
significantly impact soil organic and macronutrients that 
are useful for plant growth [3, 4]. Land use and land cover 
also have an impact on the rate of soil erosion [5]. Studies 
[6–9] have highlighted an increase in soil erosion rates in 
areas, where natural vegetation has been converted into 
farms, settlements, and grasslands over time [10]. Exces-
sive and uncontrolled erosion leads to the loss of impor-
tant soil nutrients, such as nitrogen (N), phosphorus (P), 
and potassium (K), and consequently a decline in poten-
tial crop yield at the plot and farm levels [6].

Mali is a country with a high rate of population growth 
(2.9% in 2021 as per the World Bank Group report, while 
the data in sub-Saharan Africa was 2.6%). The southern 
region of Mali is the most populated area in the coun-
try exerting high pressure on land due to the physical 
expansion of urban and agricultural fields. This growth 
has resulted in an increased soil erosion rate over time 
[5]. The semiarid region of Southern Mali is character-
ized by intensive agricultural practices, land degrada-
tion, and extreme climatic variability. Traditional and less 
mechanical agricultural practices are applied to mono-
cultures, intercropping, tillage, and agroforestry in most 
agroecological farm fields and landscapes. Maize (Zea 
mays), sorghum (Sorghum bicolor), cotton (Gossypium 
spp), groundnut (Arachis hypogaea), and millet (Penni-
setum glaucum) are the main crops cultivated by apply-
ing a combination of manure and inorganic fertilizers. 
However, soil erosion has been a major problem affect-
ing agricultural productivity, as it affects the whole land-
scape, and interventions to mitigate it at the farm level 
seldom have an effect.

Until recently, sustainable land management practices 
in most parts of Mali focused on reducing runoff and 
soil loss at the plot or farm level through soil and water 
conservation (SWC) practices, such as contour bunding 
[7]. Although important in its application at the plot or 
farm level, the efficiency of contour bundling is limited 
in addressing landscape degradation and the loss of crop 
productivity. Excessive soil erosion is usually caused by 

accumulated runoff from farms, grazing areas, or bush-
lands. Landscape-level information about the processes 
of soil erosion, water infiltration, and the associated loss 
of valuable nutrients is often missing in most studies due 
to either insufficient data or methods of estimation [10]. 
The objective of the study was, therefore, to diagnose the 
spatial distribution of soil erosion and soil nutrient varia-
tions under different land use in two agroecological zones 
of Southern Mali using the Geographical Information 
System (GIS) software, the empirically derived relation-
ship of the Revised Universal Soil Loss Equation, in-situ 
soil data measurement, and satellite products. Specifi-
cally, the study examined (i) land use changes between 
two different agroecologies over time, (ii) spatial factors 
that influenced soil erosion and nutrient loss, (c) varia-
tions in soil nutrients under different land use practices, 
and (d) usefulness of soil and water conservation prac-
tices on agricultural land productivity.

Methods
Study area
The study was conducted in the two agroecological 
zones of Southern Mali (Bougouni and Koutiala districts) 
(Fig.  1). The total land area of Bougouni district is esti-
mated as 20,028 km2 with a population of 458,546, and 
Koutiala district has an area of 8,740 km2 and a popula-
tion of 580,453 [13]. The ecosystem of Southern Mali is 
best defined as a Sudano-Guinean savanna [11] and an 
agricultural system characterized by rainfed, small-scale 
crop-livestock, and agro-pastoral farming systems [12]. 
The study area receives high rainfall in the range of 800 
to 1200  mm and is considered the breadbasket of Mali 
[13]. In contrast, 34% of Mali’s poor residents and 45% 
of Mali’s food-poor residents live in the region [14, 15]. 
The major soil types in the study area are well-developed, 
weakly leached, ferruginous sand through loamy coarse 
sand to sandy clay loams and coarse textured. The sand 
content ranged from 250 to 890  kg  ha−1, with an aver-
age of 647  kg  ha−1. For silt, the range was from 40 to 
620 kg ha−1, with 221.1 kg ha−1 on average, while the clay 
content ranged from 50 to 330 kg  ha−1, with an average 
of 131.1  kg  ha−1. The long-term (1970–2018) average 
monthly maximum and minimum air temperatures in the 
two districts are 33 and 22  °C in Bougouni and 34 and 
23 °C in Koutiala, respectively [16].

Data and data sources
Data for land use/cover and the RUSLE model
Satellite-based information derived from Landsat 8 
images was used to produce land use and land cover 
maps, and spatially derived crop management factors 
were used in the empirical model of the Revised Univer-
sal Soil Loss Equation (RUSLE) to estimate the annual 
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soil erosion loss. In addition, the digital elevation model 
(DEM) was derived from Landsat 8 images to determine 
the empirical parameters of the RUSLE.

Rainfall data from 2000 to 2019 were collected from 
national meteorological stations in both the Bougouni 
and the Koutiala districts. To obtain the spatial coverage 
of rainfall data, the study used gridded monthly precipi-
tation data at a 1-km spatial resolution by the climatol-
ogy at high resolution for the Earth’s land surface areas 
[17]. CHELSA climatological data have a higher accuracy 
in predictions of precipitation patterns than that of many 
other products [17]. CHELSA products are in a geo-
graphic coordinate system referenced to the World Geo-
detic System 1984 (WGS84) horizontal datum, with the 
horizontal coordinates expressed in decimal degrees. The 
data were in GeoTiff format, which can be viewed using 
GIS software.

Data for soil nutrients
The in-situ soil data were archived from a project 
named the “Africa Research In Sustainable Intensifica-
tion for the Next Generation (Africa RISING)” data-
base for Mali. The data were used to validate gridded 

data from the African soil profile (https://​data.​isric.​org/​
geone​twork/​srv/​eng/​catal​og.​searc​h#/​search). In 2015, 
soil data were collected under the Africa RISING pro-
ject from 350 sampling sites in 10 villages of the Bou-
gouni and Koutiala districts of Southern Mali (Table 1). 
Sampling sites from each village were selected through 
a stratified random sampling technique. The strata 
included geographical location, availability of field-
based soil and water conservation practices, mainly 
contour bunding (CB), food crop type and mixture, nat-
ural bush and/or grazing land, agroforestry or presence 
of forestland, presence of termitarium and oxen kraal-
ing sites). From each village, a minimum of 29 com-
posite soil samples were collected from depths of 0 to 
15 cm with distribution across the strata. On a farmer’s 
field, samples were taken at five locations across two 
diagonal transects, and the coordinates at the midpoint 
were determined using hand-held Garmin GPS. Stand-
ard laboratory soil tests were employed to evaluate the 
fertility status of the soils, thereby mapping the erod-
ibility and impact of land use on soil nutrients; carbon 
(C), nitrogen (N), phosphorus (P), and potassium (K) 
analyses were performed.

Fig. 1  Map showing the study area in the two districts of Bougouni and Koutiala (Sikasso region), Southern Mali

https://data.isric.org/geonetwork/srv/eng/catalog.search#/search
https://data.isric.org/geonetwork/srv/eng/catalog.search#/search
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Data analysis
Land use changes between two different landscapes 
over time
Land use changes between two different periods were 
evaluated based on percentage changes. A series of 
processes from data acquisition, data pre-processing, 
supervised classification, and post-classification were 
performed. Pre-processing was the first step conducted 
on Landsat 8 images [18]. Geometric correction, image 
enhancement, and topographical correction were per-
formed for data pre-processing. The raw data were 
projected to the UTM WGS-84 projection system for 
supervised classification. An accuracy assessment was 
performed using ArcGIS software to determine the 
kappa coefficient of agreement (Eqs. 1–3):

 where r is the number of rows in the error matrix, Pii is 
the proportion of pixels in row i and column I, Pi+ is the 
proportion of the marginal total of row i, and P+i is the 
proportion of the marginal total of column i.

(1)KA =
Po − Pc

1− Pc

(2)Po =

r
∑

i=1

Pii

(3)Pc =

r
∑

i=1

(Pi+ ∗ P+i)

Identification of factors that influence soil erosion 
and nutrient loss
Rainfall erosivity factor (R)
The rainfall erosivity factor (R) explains the variations in 
rainfall intensity at different locations within the land-
scape that can cause soil erosion. The R values for each 
agroecological zone were calculated using the CHELSA 
database and gridded data from 1979 to 2016 using 
Eq. 4. The formula has been used in many parts of Africa 
[19]:

where R is the rainfall erosivity factor in MJ mm 
ha−1 h−1 year−1, and P is the mean annual rainfall in mm.

Soil erodibility factor (K)
Soil detachment and transport caused by the impact of 
raindrops and surface flow are represented by the K fac-
tor. Soil data on texture, structure, organic matter, and 
permeability were used to estimate the K factor as per 
Eq. 5 [20]. Data available in the Africa RISING database 
for Mali were used to validate the gridded data from the 
African soil profile (https://​data.​isric.​org/​geone​twork/​
srv/​eng/​catal​og.​search) and to adequately determine the 
soil erodibility factor (K).

Slope length (L) and slope (S) factors
Slope steepness and slope length (LS-factor) were deter-
mined from a DEM. The Spatial Analyst Toolbox and 
the Map Algebra Raster Calculator in the ArcGIS envi-
ronment were used to generating multiple slope maps 
and flow accumulation as well as to calculate and gen-
erate the topographic factor map. The flow accumula-
tion was calculated from the Spatial Analyst Hydrology 
toolset of ArcMap in the ArcGIS environment. The slope 
of the study area as a percentage was calculated by the 
Slope tools in the Spatial Analyst Surface toolset of Arc-
Map from the DEM of the districts. The DEM data were 
downloaded from https://​lpdaa​csvc.​cr.​usgs.​gov/​appee​
ars/​downl​oad/​4d436​aca-​c5be-​4011-​981f-​1e602​0f 37c79. 
These data were used to determine and map the slope 
length and slope gradient of the topographic factors in 
the study area. The determination of the LS factor was 
performed using Eq. 6:

(4)R factor = −8.12+ 0.562 ∗ P

(5)K factor =

% sand+% slit
% clay

100

Table 1  Soil sample collection in ten villages in the districts of 
Bougouni and Koutiala

* MAR (Mean Annual Rainfall)
** N (Number of soil sampling locations)

Village Longitude Latitude Population MAR* 
(mm)

N**

Madina 11.35 − 7.66 1582 1137 31

Dieba 11.51 − 7.931 1121 1139 29

Sibirila 11.43 − 7.77 929 1138 29

Flola 11.42 − 7.64 465 1102 29

Nampossela 12.33 − 5.34 2443 813 29

N’golonianasso 12.43 − 5.70 4383 849 30

M’pessoba 12.67 − 5.71 9862 800 33

Sirakele 12.52 − 5.47 4502 818 34

Kani 12.25 − 5.19 2488 944 33

Zanzoni 12.61 − 5.57 3463 842 31

Total 308

https://data.isric.org/geonetwork/srv/eng/catalog.search
https://data.isric.org/geonetwork/srv/eng/catalog.search
https://lpdaacsvc.cr.usgs.gov/appeears/download/4d436aca-c5be-4011-981f-1e6020f
https://lpdaacsvc.cr.usgs.gov/appeears/download/4d436aca-c5be-4011-981f-1e6020f
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where flow accumulation denotes the accumulated 
upslope contributing area for a given cell, and LS is the 
combined slope length and slope steepness factor.

Crop management factor (C)
The crop management factor (C) was used to reflect the 
effect of cropping practices on erosion control in agricul-
tural lands and vegetation covers. The C-factor is defined 
as the ratio of soil loss from land cropped under specific 
conditions to the loss from clean-tilled, continuous fal-
low. In the present study, the C values were determined 
based on the values presented in Table 2. Land use and 
cover maps were converted into polygons to estimate the 
spatial values of the C-factor based on the specific land 
use [9].

Conservation practice factor (P‑factor)
In conservation practice, the P-factor values range from 0 
to 1 depending on the land use/cover types. The highest 
value is assigned to areas with no conservation practice 
or with a high slope, while the minimum values cor-
respond to built-up land and plantation area with strip 
and contour or small sloped areas. The P-factor values in 
Table  3 were based on the land cultivation method and 
slope [21]. The spatial values of the P-factor were deter-
mined from a DEM and GIS technique.

Revised Universal Soil Loss Equation (RUSLE)
The RUSLE was developed by Renard et  al. [22] based 
on the modifications of the USLE [23]. There have been 
many studies on soil erosion worldwide [8, 9], and they 
have used RUSLE to predict annual soil loss, with results 
revealing that land use has an impact on the rate of soil 
erosion  [24–26]. The RUSLE model uses five different 
raster layers processed by overlay analysis to generate 

(6)

LS =Pow
(

[flow accumulation] ∗
resolution
22.1, 0.4

)

∗ Pow

(

sin
(

[slope of DEM]
)

0.0896, 1.4

)

∗ 1.4

the annual soil loss rate of each cell using the “raster cal-
culator”. In the present study, soil erosion was estimated 
using the RUSLE (Eq.  4) based on the raster calculator 
technique in ArcGIS 10.7. The five factors (in the raster 
layer) used in the RUSLE model are erodibility (K), slope 
length (L), slope steepness (S), cropping system (C), and 
conservation practice (P):

 where A is the annual rate of soil loss 
(ton ha−1 yr−1), and R is the annual rainfall erosivity fac-
tor (MJ mm ha−1  h−1  yr−1). K  is expressed in tons ha yr. 
ha−1 MJ−1 mm−1, and L, S, C, and P are dimensionless.

The five-factor layers used in the RUSLE were pro-
duced from various data sources with different spatial 
resolutions. Thus, all factor layers were previously spa-
tialized and re-gridded to the same spatial resolution as 
shown in the flow chart (Fig. 2).

Statistical analysis
A T test was applied to compare the means of the sam-
ples in different years. Variations in the annual soil loss 
and soil nutrient loss among different land use types were 
evaluated at the 5% significance level in the two different 

(7)A = R× K × (L× S)× C × P

Table 2  Attribute values of vegetation cover (C-factor) [9]

Class C-factor

Built-up land 0.003

Savanna woodland 0.004

Bare land 1

Waterbody 0

Agriculture 0.4

Natural vegetation 0.025

Table 3  Conservation practice factor (P)

Slope (%) Contouring Strip cropping Terracing

0–7 0.55 0.27 0.10

7–11.3 0.60 0.30 0.12

11.3–17.6 0.80 0.40 0.16

17.6–26.8 0.90 0.45 0.18

 > 26.8 1.0 0.50 0.20

Fig. 2  Flow chart for the determination of annual soil loss
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agroecological zones. The spatial difference ratio was 
used to detect land use change occurring between the 
two studied agroecologies.

Results
Land use and land cover change
Land use and land cover maps were classified into six 
classes, namely, agricultural land (AL), bare land (BL), 
water (W), settlements (S), savanna woodland (SW), 
and natural vegetation (NV). Percentage change analy-
ses showed an increase in NV by 1151 km2 at a rate of 
230 km2 per year, and AL increased by 1600 km2 at a rate 
of 320 km2 per year for Bougouni. This increase was a 
result of the introduction of new agricultural practices 
that converted forest areas into cashew plantations (com-
mercial trees). Settlement areas increased at a rate of 
0.5 km2/year, and in other land uses, SW and bare land 
showed a significant decline. In a similar mode, AL and 
NV areas increased over the studied period in Koutiala 
(Table  4). Land use and land cover change detection 
analysis between the two agroecologies showed that NV 
and agriculture areas increased at a higher rate in Bou-
gouni than in Koutiala. Bougouni was more favourable to 
environmental development than Koutiala. However, the 
anthropogenic effects of agriculture and deforestation 
played major roles in land use changes in Bougouni.

Spatial factors influencing soil erosion and nutrient loss
Figure 3 and Table 5 show the variations in the spatial fac-
tors in the two agroecologies. The R values were higher 
in Bougouni than in Koutiala. The K values showed that 
erodibility was greater in Koutiala than in Bougouni, 
implying that soil in Bougouni resists erosion better than 
that in Koutiala (Fig. 4). The spatially mapped LS factors 
resulted in LS values ranging between 1.4 and 58 for Bou-
gouni, while in Koutiala, the values ranged between 1.4 

and 33. The value of the crop support practice factor (P) 
ranged between 0.55 and 1.

Spatial pattern of the annual soil loss
Table 6 shows the variation in the mean soil loss under 
different land uses across the two agroecologies. In 
Bougouni, in 2015, a higher mean value of soil loss was 
observed in bare land followed by agricultural land. Simi-
lar observations were made in the second period (2019), 
but agricultural land was more vulnerable than bare land. 
Similarly, in Koutiala, agricultural land was more vulner-
able to land degradation in 2019. Considering the mean 
values of soil erosion loss, it was observed that the rate of 
land degradation vulnerability was greater in many of the 
agriculture fields.

Statistical analysis between the mean values indicated a 
significant difference in annual soil loss among the differ-
ent land use types across locations for different periods 
(p < 0.05) (Table  7). The soil erosion loss in SW and the 
vegetation were not significant across the two agroecolo-
gies (P > 0.05). Significant soil erosion loss (p < 0.05) was 
observed across locations for agriculture, settlements, 
and bare land in the two periods. The relationship for 
bare land was stronger than that for agriculture (Table 7).

As shown in Table  8, the magnitude of soil erosion 
loss was classified into five categories ranging from low 
to severe. The results revealed that a low rate of soil ero-
sion occurred in many agricultural fields in both districts. 
Over the period from 2015 to 2019, a decline in the soil 
erosion rate was observed in all classes except for the 
‘moderate rate’. This decline in erosion rates could be 
explained by the introduction of different cultural prac-
tices, such as contour bunding, afforestation, stone lines, 
and Zai, introduced by different projects in the two dis-
tricts [6, 7, 12].

Table 4  Land use and land cover in 2015 and 2019

* SW Savannah Woodland

NV** Natural Vegetation

Land use and 
land cover

Bougouni Koutiala

Area (2015) Area (2019) Change (%) Area (2015) Area (2019) Change (%)

Km2 % Km2 % Km2 % Km2 %

Settlements 44.0901 0.22 45.5643 0.23 0.01 66.79 0.70 68.68 0.72 0.02

Water 154.127 0.78 141.683 0.72 − 0.06 116.0976 1.21 16.30 0.17 − 1.04

SW* 2152.59 10.91 827.492 4.19 − 6.72 393.0814 4.09 205.65 2.14 − 1.95

Bare land 1788.99 9.06 373.638 1.89 − 7.17 561.5779 5.85 337.61 3.52 − 2.33

NV** 11,677.10 59.17 12,828.92 65.00 5.83 5137.06 53.49 5,633.94 58.66 5.17

Agriculture 3919.44 19.86 5519.02 27.96 8.10 3329.41 34.67 3,342.37 34.80 0.13
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Spatial variation in C, N, P, and K under different land uses
Nitrogen (N), phosphorus (P), and potassium (K) are 
among the soil nutrients that are important for plant 
growth and development. Nitrogen (N) is a macronutri-
ent that is required by crops in large quantities, and its 
deficiency restricts crop production in many agricul-
tural fields. Plants need the same amount of potassium 
and nitrogen for growth. Phosphorus (P) is required by 
plants to increase yield. Soil organic carbon (C) improves 
soil’s physical and chemical properties. Table 9 shows the 

variation in soil nutrients under different land use types. 
The results revealed that there were significant varia-
tions in N, P, K, and C across different land use catego-
ries in both the Bougouni and the Koutiala agroecologies 
(P < 0.05).

A comparison between soil nutrients in the two agro-
ecologies highlighted that Bougouni had a higher con-
centration of nitrogen and a higher carbon content than 
Koutiala. The variance between these two districts was 
dependent on the land use types. Across the three land 
uses (agriculture, water, and bare land), phosphorus was 
higher in Bougouni than in Koutiala, but it was the oppo-
site for the other land uses (settlements, natural vegeta-
tion, and savanna woodland) (Table 9).

Discussion
Soil erosion is the main driver of land degradation in 
many sub-Saharan agricultural fields. The study areas 
in Southern Mali are mostly covered by natural vegeta-
tion and agricultural fields. Over time, agricultural and 

Fig. 3  Spatial pattern a R Factor, b K Factor, c LS Factor, d P Factor, in Bougouni

Table 5  Spatial factors influencing soil erosion and nutrient loss

R = Rainfall Erosivity in MJmmha−1 h−1 y−1, K = Soil Erodibility (K) t.ha.h. 
ha−1 MJ−1 mm−1, LS = Slope Length (L) and Slope (S) Factors, P = Crop Support 
Practice Factor, C = Cropping Management Factor

District/
Agroecology

R K LS P C

Bougouni 683–180 0.073–0.015 1.4–58 0.55–1 Refer Table 2

Koutiala 477–226 1.4–33 1.4–33 0.55–1 Refer Table 2
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Fig. 4  Spatial pattern a R Factor, b K Factor, c LS Factor, d P Factor, in Koutiala

Table 6  Mean values of annual soil erosion loss under different land uses in t/ha/year

SW Savannah Woodland, NV Natural Vegetation

Landuse
land cover

Bougouni Koutiala Erosion rate

2015 2019 2015 2019 Bougouni Koutiala

Mean Std Mean Std Mean Std Mean Std Mean Mean

Agriculture 7.8 2.3 3.7 2.28 7.22 2.43 5.14 3.71 − 4.1 − 2.08

Settlements 0.21 1.09 2.61 3.24 0.04 0.01 1.38 2.46 2.4 1.34

S W 0.08 0.06 1.21 3.91 0.10 0.16 0.94 2.05 1.13 0.84

Bare soil 17.53 5.82 2.87 3.16 14.90 8.91 3.11 4.14 − 14.66 − 11.78

NV 0.42 0.1 0.79 1.6 1.82 4.19 0.38 0.09 0.37 − 1.43

Water 0.00 0.00 0.15 0.71 0.01 0.06 0.23 0.54 0.15 0.22

Table 7  Comparison between mean soil erosion rates

SW Savannah Woodland, NV Natural Vegetation; ***Significant across locations, **Significant between the years, *Significant across land uses

Period Statistic Agriculture Settlements SW NV Bare land

2015 p value 6.07e-05*** 2.2e-16*** 0.1013 0.1862 1.38e-06***

2019 p value 0.000219* 0.003478* 0.4961 0.4133 0.007281**
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settlement areas have increased due to urban population 
growth and the need for more agricultural fields [27]. For 
instance, the increase in cashew plantations in Bougouni 
has led to the expansion of agriculture, leading to an 
increase in fallow areas. The decrease in water bodies was 
mainly due to gold mining activities and drought created 
by rainfall variability in a few landscapes. Land uses have 
an important impact on the soil’s chemical and physical 
properties [28]. Previous studies have highlighted the 
influence of land use on soil management practices [29–
31]. In addition, the importance of soil and water conser-
vation in controlling soil erosion has been demonstrated 
by many studies conducted in the region [6, 7].

The findings of this study revealed the presence of 
low erosion rates in large landscapes in the studied 
areas, as established elsewhere [1, 27, 32]. Despite the 
low magnitude of runoff from the larger part of the 
Southern Mali landscapes, the runoff generated from 
many agricultural fields is severe and is the cause of 
land degradation as well as the loss of important soil 
nutrients. When forest and natural vegetation areas are 
the targets of human-induced activities, the rate of vul-
nerability to erosion increases over time [6].

Soil erosion vulnerability was reduced by the appli-
cation of soil and water conservation (SWC) practices. 
The major SWC practices in the study area that have 
demonstrated a reduction in annual soil loss and an 
increase in farm-level soil nutrients are stone bunds, 
ridges, contour bunding, and tree plantations [6].

In this study, the highest values of N, K, and C were 
recorded in water bodies, and a greater amount of P 
was noted in settlement areas with P in vegetation cov-
ers (natural vegetation and savanna woodland). These 
findings corroborate well with previous assessments of 
soil fertility variation in different land uses and man-
agement practices [27, 28, 33].

The economy of Mali is mainly based on rainfed agri-
culture, and hence, any depletion in soil nutrients may 
cause food insecurity and poverty for smallholder farm-
ing systems. As soil erosion has a significant impact on 
agricultural productivity, land management practices 
should be considered a priority by decision-makers for 
agricultural-led economic growth. The current land 
management practice in Mali may be the reason for the 
varying erosion risk rather than natural conditions, as 
explained by Rousseva et al. [35]. Based on the findings 

Table 8  Land area in the percentage of soil erosion loss rate for 2015 and 2019 in two agroecologies

Soil erosion rate
(t/ha/year)

Bougouni Koutiala

Area (2015) (%) Area (2019)
(%)

Change Area (2015)
(%)

Area (2019)
(%)

Change

Low (< 5) 71.70 69.67 − 2.04 64.29 65.45 1.16

Moderate (5–11) 17.02 26.64 9.62 26.74 26.80 0.06

High (11–25) 10.67 3.43 − 7.24 8.35 6.57 − 1.78

Very High (25–50) 0.54 0.23 − 0.30 0.54 1.12 0.58

Severe > 50 0.07 0.03 − 0.05 0.08 0.06 − 0.02

Table 9  Mean values and standard deviation of soil nutrient properties for different land uses in two agroecologies

* Sample Size (N) = 112 for Bougouni and 122 for Koutiala, SW = Savanna Woodland, NV = Natural Vegetation

Land use Land 
cover

Soil nutrient properties

Bougouni* Koutiala*

Nitrogen (mg/
kg)

Phosphorus 
(ppm)

Potassium 
cmol + /kg

Carbon (mg/
kg)

Nitrogen
(mg/kg)

Phosphorus
(ppm)

Potassium
cmol + /kg

Carbon
(mg/kg)

Agriculture 591.82 ± 52.96 407.24 ± 84.44 102.93 ± 14.71 8.36 ± 2.67 479.04 ± 65.14 399.25 ± 117.19 101.13 ± 8.20 4.98 ± 1.38

Settlements 629.69 ± 69.48 469.34 ± 140.5 93.52 ± 13.13 6.78 ± 0.83 517.196 ± 47.11 520.88 ± 189.29 107.04 ± 8.59 6.14 ± 1.56

Water 796.75 ± 175.9 425.86 ± 99.49 108.42 ± 24.44 13.65 ± 4.95 675.97 ± 112.83 424.02 ± 87.73 114.98 ± 7.14 8.55 ± 2.18

SW 679.71 ± 75.45 376.87 ± 70.42 102.42 ± 12.22 9.88 ± 2.62 534.06 ± 69.95 418.64 ± 63.07 109.07 ± 9.46 5.68 ± 1.33

Bare land 682.77 ± 93.96 450.49 ± 128.9 104.15 ± 13.85 10.43 ± 2.66 515.087 ± 67.34 419.55 ± 91.63 103.40 ± 10.11 5.34 ± 1.22

NV 694.68 ± 62.34 385.95 ± 90.50 100.24 ± 13.41 9.30 ± 1.71 516.60 ± 66.00 411.19 ± 63.30 106.56 ± 8.50 5.01 ± 1.34

P Value 1.96E-49 2.34E-12 4.62E-10 1.06E-60 4.08E-84 3.09E-18 7.37E-34 7.13E-76
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of this study and recommendations from previous 
studies [6, 7, 34], soil nutrient loss could be controlled 
by applying appropriate soil and water conservation 
practices integrated with good agronomic practices. 
The most common SWC practices recommended in 
the study area include a combination of construct-
ing contour bunding, planting trees, stone bunds, and 
terracing. This study calls for increased efforts by all 
stakeholders to implement the needed intervention at 
the landscape scale and boost agricultural productivity 
in the region.

Conclusion
Through spatial modelling and empirical relations, soil 
loss was estimated for 2015 and 2019 using soil loss 
parameters and the RUSLE. The results revealed that 
the dominant portion of land use and land cover was 
characterized by erosion risks leading to land degrada-
tion. High deficiencies in soil nutrients (N, P, K, and C) 
were observed in the landscapes. Many of these nutri-
ents were found in the water bodies as a result of the 
increased rate of soil erosion from the landscape over 
time, thus leaving only a small amount on the agricul-
tural fields. The implementation of a few SWC and res-
toration practices, such as contour bunding and cashew 
plantation, seemed to contribute to reduced soil ero-
sion risk over the studied period (2015 to 2019).

The results of this study are useful in providing 
guided information about the importance of controlling 
soil erosion at the landscape level and retaining impor-
tant plant growth parameters in agricultural fields. 
Mapping soil erosion risk at the landscape level helps 
identify vulnerable areas and protect them at a priority 
level. Land planners, government extension services, 
and local NGOs can, therefore, use the results of this 
study to develop informed natural resource conserva-
tion strategies and prioritize intervention measures 
to protect soil loss from many agricultural farms. This 
study strongly recommends scaling up the implementa-
tion of SWC practices at the landscape scale and inte-
grating other sustainable land management practices, 
such as afforestation and crop management strategies, 
for the health of the ecosystem and improved agricul-
tural productivity.
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